Your browser doesn't support javascript.
loading
Chemical Interaction at the MoO3/CH3NH3PbI3-xClx Interface.
Liao, Xiaxia; Habisreutinger, Severin N; Wiesner, Sven; Sadoughi, Golnaz; Abou-Ras, Daniel; Gluba, Marc A; Wilks, Regan G; Félix, Roberto; Rusu, Marin; Nicholas, Robin J; Snaith, Henry J; Bär, Marcus.
Afiliación
  • Liao X; School of Materials Science and Engineering, Nanchang University, Nanchang 330031, P. R. China.
  • Habisreutinger SN; Department Interface Design, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Albert-Einstein-Str. 15, 12489 Berlin, Germany.
  • Wiesner S; Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, U.K.
  • Sadoughi G; Institute Functional Oxides for Energy-Efficient IT, HZB, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
  • Abou-Ras D; Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, U.K.
  • Gluba MA; Structure and Dynamics of Energy Materials, HZB, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
  • Wilks RG; Institute for Silicon Photovoltaics, HZB, Kekulestr. 5, 12489 Berlin, Germany.
  • Félix R; Department Interface Design, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Albert-Einstein-Str. 15, 12489 Berlin, Germany.
  • Rusu M; Energy Materials In-Situ Laboratory Berlin (EMIL), HZB, Albert-Einstein-Str. 15, 12489 Berlin, Germany.
  • Nicholas RJ; Department Interface Design, Helmholtz-Zentrum Berlin für Materialien und Energie GmbH (HZB), Albert-Einstein-Str. 15, 12489 Berlin, Germany.
  • Snaith HJ; Structure and Dynamics of Energy Materials, HZB, Hahn-Meitner-Platz 1, 14109 Berlin, Germany.
  • Bär M; Department of Physics, Clarendon Laboratory, University of Oxford, Oxford OX1 3PU, U.K.
ACS Appl Mater Interfaces ; 13(14): 17085-17092, 2021 Apr 14.
Article en En | MEDLINE | ID: mdl-33787195
ABSTRACT
The limited long-term stability of metal halide perovskite-based solar cells is a bottleneck in their drive toward widespread commercial adaptation. The organic hole-transport materials (HTMs) have been implicated in the degradation, and metal oxide layers are proposed as alternatives. One of the most prominent metal oxide HTM in organic photovoltaics is MoO3. However, the use of MoO3 as HTM in metal halide perovskite-based devices causes a severe solar cell deterioration. Thus, the formation of the MoO3/CH3NH3PbI3-xClx (MAPbI3-xClx) heterojunction is systematically studied by synchrotron-based hard X-ray photoelectron spectroscopy, scanning electron microscopy, energy-dispersive X-ray spectroscopy, and Raman spectroscopy. Upon MoO3 deposition, significant chemical interaction is induced at the MoO3/MAPbI3-xClx interface substoichiometric molybdenum oxide is present, and the perovskite decomposes in the proximity of the interface, leading to accumulation of PbI2 on the MoO3 cover layer. Furthermore, we find evidence for the formation of new compounds such as PbMoO4, PbN2O2, and PbO as a result of the MAPbI3-xClx decomposition and suggest chemical reaction pathways to describe the underlying mechanism. These findings suggest that the (direct) MoO3/MAPbI3-xClx interface may be inherently unstable. It provides an explanation for the low power conversion efficiencies of metal halide perovskite solar cells that use MoO3 as a hole-transport material and in which there is a direct contact between MoO3 and perovskite.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2021 Tipo del documento: Article
...