Your browser doesn't support javascript.
loading
Derivation and validation of a machine learning risk score using biomarker and electronic patient data to predict progression of diabetic kidney disease.
Chan, Lili; Nadkarni, Girish N; Fleming, Fergus; McCullough, James R; Connolly, Patricia; Mosoyan, Gohar; El Salem, Fadi; Kattan, Michael W; Vassalotti, Joseph A; Murphy, Barbara; Donovan, Michael J; Coca, Steven G; Damrauer, Scott M.
Afiliación
  • Chan L; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA. lili.chan@mountsinai.org.
  • Nadkarni GN; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  • Fleming F; Renalytix AI Plc, Cardiff, UK.
  • McCullough JR; Renalytix AI, Inc., New York, NY, USA.
  • Connolly P; Renalytix AI Plc, Cardiff, UK.
  • Mosoyan G; Renalytix AI, Inc., New York, NY, USA.
  • El Salem F; Renalytix AI Plc, Cardiff, UK.
  • Kattan MW; Renalytix AI, Inc., New York, NY, USA.
  • Vassalotti JA; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  • Murphy B; Department of Pathology, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  • Donovan MJ; Department of Quantitative Health Sciences, Lerner Research Institute, Cleveland, OH, USA.
  • Coca SG; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
  • Damrauer SM; Department of Medicine, Icahn School of Medicine at Mount Sinai, New York, NY, USA.
Diabetologia ; 64(7): 1504-1515, 2021 07.
Article en En | MEDLINE | ID: mdl-33797560
AIM: Predicting progression in diabetic kidney disease (DKD) is critical to improving outcomes. We sought to develop/validate a machine-learned, prognostic risk score (KidneyIntelX™) combining electronic health records (EHR) and biomarkers. METHODS: This is an observational cohort study of patients with prevalent DKD/banked plasma from two EHR-linked biobanks. A random forest model was trained, and performance (AUC, positive and negative predictive values [PPV/NPV], and net reclassification index [NRI]) was compared with that of a clinical model and Kidney Disease: Improving Global Outcomes (KDIGO) categories for predicting a composite outcome of eGFR decline of ≥5 ml/min per year, ≥40% sustained decline, or kidney failure within 5 years. RESULTS: In 1146 patients, the median age was 63 years, 51% were female, the baseline eGFR was 54 ml min-1 [1.73 m]-2, the urine albumin to creatinine ratio (uACR) was 6.9 mg/mmol, follow-up was 4.3 years and 21% had the composite endpoint. On cross-validation in derivation (n = 686), KidneyIntelX had an AUC of 0.77 (95% CI 0.74, 0.79). In validation (n = 460), the AUC was 0.77 (95% CI 0.76, 0.79). By comparison, the AUC for the clinical model was 0.62 (95% CI 0.61, 0.63) in derivation and 0.61 (95% CI 0.60, 0.63) in validation. Using derivation cut-offs, KidneyIntelX stratified 46%, 37% and 17% of the validation cohort into low-, intermediate- and high-risk groups for the composite kidney endpoint, respectively. The PPV for progressive decline in kidney function in the high-risk group was 61% for KidneyIntelX vs 40% for the highest risk strata by KDIGO categorisation (p < 0.001). Only 10% of those scored as low risk by KidneyIntelX experienced progression (i.e., NPV of 90%). The NRIevent for the high-risk group was 41% (p < 0.05). CONCLUSIONS: KidneyIntelX improved prediction of kidney outcomes over KDIGO and clinical models in individuals with early stages of DKD.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 1_ASSA2030 Problema de salud: 1_sistemas_informacao_saude Asunto principal: Biomarcadores / Nefropatías Diabéticas / Registros Electrónicos de Salud / Aprendizaje Automático Tipo de estudio: Etiology_studies / Incidence_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Aspecto: Patient_preference Límite: Adult / Aged / Aged80 / Female / Humans / Male / Middle aged País/Región como asunto: America do norte Idioma: En Revista: Diabetologia Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 1_ASSA2030 Problema de salud: 1_sistemas_informacao_saude Asunto principal: Biomarcadores / Nefropatías Diabéticas / Registros Electrónicos de Salud / Aprendizaje Automático Tipo de estudio: Etiology_studies / Incidence_studies / Observational_studies / Prognostic_studies / Risk_factors_studies Aspecto: Patient_preference Límite: Adult / Aged / Aged80 / Female / Humans / Male / Middle aged País/Región como asunto: America do norte Idioma: En Revista: Diabetologia Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos
...