Your browser doesn't support javascript.
loading
Disentangling Rotational Dynamics and Ordering Transitions in a System of Self-Organizing Protein Nanorods via Rotationally Invariant Latent Representations.
Kalinin, Sergei V; Zhang, Shuai; Valleti, Mani; Pyles, Harley; Baker, David; De Yoreo, James J; Ziatdinov, Maxim.
Afiliación
  • Kalinin SV; Center for Nanophase Materials Sciences, Oak Ridge National Laboratory, Oak Ridge, Tennessee 37831, United States.
  • Zhang S; Materials Science and Engineering, University of Washington, Seattle, Washington 98195, United States.
  • Valleti M; Physical Sciences Division, Pacific Northwest National Laboratory, Richland, Washington 99354, United States.
  • Pyles H; Bredesen Center for Interdisciplinary Research, University of Tennessee, Knoxville, Tennessee 37996, United States.
  • Baker D; Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States.
  • De Yoreo JJ; Institute for Protein Design, University of Washington, Seattle, Washington 98195, United States.
  • Ziatdinov M; Department of Biochemistry, University of Washington, Seattle, Washington 98195, United States.
ACS Nano ; 15(4): 6471-6480, 2021 04 27.
Article en En | MEDLINE | ID: mdl-33861068
ABSTRACT
The dynamics of complex ordering systems with active rotational degrees of freedom exemplified by protein self-assembly is explored using a machine learning workflow that combines deep learning-based semantic segmentation and rotationally invariant variational autoencoder-based analysis of orientation and shape evolution. The latter allows for disentanglement of the particle orientation from other degrees of freedom and compensates for lateral shifts. The disentangled representations in the latent space encode the rich spectrum of local transitions that can now be visualized and explored via continuous variables. The time dependence of ensemble averages allows insight into the time dynamics of the system and, in particular, illustrates the presence of the potential ordering transition. Finally, analysis of the latent variables along the single-particle trajectory allows tracing these parameters on a single-particle level. The proposed approach is expected to be universally applicable for the description of the imaging data in optical, scanning probe, and electron microscopy seeking to understand the dynamics of complex systems where rotations are a significant part of the process.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: ACS Nano Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: ACS Nano Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos
...