Your browser doesn't support javascript.
loading
The Effect of Ultra-slow Velocities on Insertion Forces: A Study Using a Highly Flexible Straight Electrode Array.
Zuniga, M Geraldine; Hügl, Silke; Engst, Benjamin G; Lenarz, Thomas; Rau, Thomas S.
Afiliación
  • Zuniga MG; Department of Otolaryngology and Cluster of Excellence Hearing4all, Hannover Medical School, Hannover.
  • Hügl S; Department of Otolaryngology and Cluster of Excellence Hearing4all, Hannover Medical School, Hannover.
  • Engst BG; Collaborative Research Center 884, University of Mannheim, Mannheim, Germany.
  • Lenarz T; Department of Otolaryngology and Cluster of Excellence Hearing4all, Hannover Medical School, Hannover.
  • Rau TS; Department of Otolaryngology and Cluster of Excellence Hearing4all, Hannover Medical School, Hannover.
Otol Neurotol ; 42(8): e1013-e1021, 2021 09 01.
Article en En | MEDLINE | ID: mdl-33883518
OBJECTIVE: The present study sought to 1) characterize insertion forces resulting from a flexible straight electrode array (EA) inserted at slow and ultra-slow insertion velocities, and 2) evaluate if ultra-slow velocities decrease insertion forces independent of other variables. BACKGROUND: Low insertion forces are desirable in cochlear implant (CI) surgery to reduce trauma and preserve hearing. Recently, ultra-slow insertion velocities (lower than manually feasible) have been shown to produce significantly lower insertion forces using other EAs. METHODS: Five flexible straight EAs were used to record insertion forces into an inelastic artificial scala tympani model. Eleven trial recordings were performed for each EA at five predetermined automated, continuous insertion velocities ranging from 0.03 to 1.6 mm/s. RESULTS: An ultra-slow insertion velocity of 0.03 mm/s resulted in a median insertion force of 0.010 N at 20 mm of insertion depth, and 0.026 N at 24.3 mm-the final insertion depth. These forces represent only 24 to 29% of those measured using 1.6 mm/s. After controlling for insertion depth of the EA into the artificial scala tympani model and trial insertion number, decreasing the insertion velocity from 0.4 to 0.03 mm/s resulted in a 50% decrease in the insertion forces. CONCLUSION: Using the tested EA ultra-slow velocities can decrease insertion forces, independent of variables like insertion depth. Our results suggest ultra-slow velocities can reduce insertion forces at least 60%, compared with humanly feasible continuous velocities (≥0.9 mm/s).
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Implantes Cocleares / Implantación Coclear Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Otol Neurotol Asunto de la revista: NEUROLOGIA / OTORRINOLARINGOLOGIA Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Implantes Cocleares / Implantación Coclear Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Otol Neurotol Asunto de la revista: NEUROLOGIA / OTORRINOLARINGOLOGIA Año: 2021 Tipo del documento: Article
...