Your browser doesn't support javascript.
loading
Towards complete and error-free genome assemblies of all vertebrate species.
Rhie, Arang; McCarthy, Shane A; Fedrigo, Olivier; Damas, Joana; Formenti, Giulio; Koren, Sergey; Uliano-Silva, Marcela; Chow, William; Fungtammasan, Arkarachai; Kim, Juwan; Lee, Chul; Ko, Byung June; Chaisson, Mark; Gedman, Gregory L; Cantin, Lindsey J; Thibaud-Nissen, Francoise; Haggerty, Leanne; Bista, Iliana; Smith, Michelle; Haase, Bettina; Mountcastle, Jacquelyn; Winkler, Sylke; Paez, Sadye; Howard, Jason; Vernes, Sonja C; Lama, Tanya M; Grutzner, Frank; Warren, Wesley C; Balakrishnan, Christopher N; Burt, Dave; George, Julia M; Biegler, Matthew T; Iorns, David; Digby, Andrew; Eason, Daryl; Robertson, Bruce; Edwards, Taylor; Wilkinson, Mark; Turner, George; Meyer, Axel; Kautt, Andreas F; Franchini, Paolo; Detrich, H William; Svardal, Hannes; Wagner, Maximilian; Naylor, Gavin J P; Pippel, Martin; Malinsky, Milan; Mooney, Mark; Simbirsky, Maria.
Afiliación
  • Rhie A; Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
  • McCarthy SA; Department of Genetics, University of Cambridge, Cambridge, UK.
  • Fedrigo O; Wellcome Sanger Institute, Cambridge, UK.
  • Damas J; Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA.
  • Formenti G; The Genome Center, University of California Davis, Davis, CA, USA.
  • Koren S; Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA.
  • Uliano-Silva M; Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA.
  • Chow W; Genome Informatics Section, Computational and Statistical Genomics Branch, National Human Genome Research Institute, National Institutes of Health, Bethesda, MD, USA.
  • Fungtammasan A; Leibniz Institute for Zoo and Wildlife Research, Department of Evolutionary Genetics, Berlin, Germany.
  • Kim J; Berlin Center for Genomics in Biodiversity Research, Berlin, Germany.
  • Lee C; Wellcome Sanger Institute, Cambridge, UK.
  • Ko BJ; DNAnexus Inc., Mountain View, CA, USA.
  • Chaisson M; Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea.
  • Gedman GL; Interdisciplinary Program in Bioinformatics, Seoul National University, Seoul, Republic of Korea.
  • Cantin LJ; Department of Agricultural Biotechnology and Research Institute of Agriculture and Life Sciences, Seoul National University, Seoul, Republic of Korea.
  • Thibaud-Nissen F; University of Southern California, Los Angeles, CA, USA.
  • Haggerty L; Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA.
  • Bista I; Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA.
  • Smith M; National Center for Biotechnology Information, National Library of Medicine, NIH, Bethesda, MD, USA.
  • Haase B; European Molecular Biology Laboratory, European Bioinformatics Institute, Wellcome Genome Campus, Hinxton, UK.
  • Mountcastle J; Department of Genetics, University of Cambridge, Cambridge, UK.
  • Winkler S; Wellcome Sanger Institute, Cambridge, UK.
  • Paez S; Wellcome Sanger Institute, Cambridge, UK.
  • Howard J; Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA.
  • Vernes SC; Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA.
  • Lama TM; Max Planck Institute of Molecular Cell Biology and Genetics, Dresden, Germany.
  • Grutzner F; DRESDEN-concept Genome Center, Dresden, Germany.
  • Warren WC; Vertebrate Genome Lab, The Rockefeller University, New York, NY, USA.
  • Balakrishnan CN; Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA.
  • Burt D; Novogene, Durham, NC, USA.
  • George JM; Neurogenetics of Vocal Communication Group, Max Planck Institute for Psycholinguistics, Nijmegen, The Netherlands.
  • Biegler MT; Donders Institute for Brain, Cognition and Behaviour, Nijmegen, The Netherlands.
  • Iorns D; School of Biology, University of St Andrews, St Andrews, UK.
  • Digby A; University of Massachusetts Cooperative Fish and Wildlife Research Unit, Amherst, MA, USA.
  • Eason D; School of Biological Science, The Environment Institute, University of Adelaide, Adelaide, South Australia, Australia.
  • Robertson B; Bond Life Sciences Center, University of Missouri, Columbia, MO, USA.
  • Edwards T; Department of Biology, East Carolina University, Greenville, NC, USA.
  • Wilkinson M; UQ Genomics, University of Queensland, Brisbane, Queensland, Australia.
  • Turner G; Department of Biological Sciences, Clemson University, Clemson, SC, USA.
  • Meyer A; Laboratory of Neurogenetics of Language, The Rockefeller University, New York, NY, USA.
  • Kautt AF; The Genetic Rescue Foundation, Wellington, New Zealand.
  • Franchini P; Kakapo Recovery, Department of Conservation, Invercargill, New Zealand.
  • Detrich HW; Kakapo Recovery, Department of Conservation, Invercargill, New Zealand.
  • Svardal H; Department of Zoology, University of Otago, Dunedin, New Zealand.
  • Wagner M; University of Arizona Genetics Core, Tucson, AZ, USA.
  • Naylor GJP; Department of Life Sciences, Natural History Museum, London, UK.
  • Pippel M; School of Natural Sciences, Bangor University, Gwynedd, UK.
  • Malinsky M; Department of Biology, University of Konstanz, Konstanz, Germany.
  • Mooney M; Department of Biology, University of Konstanz, Konstanz, Germany.
  • Simbirsky M; Department of Organismic and Evolutionary Biology, Harvard University, Cambridge, MA, USA.
Nature ; 592(7856): 737-746, 2021 04.
Article en En | MEDLINE | ID: mdl-33911273
ABSTRACT
High-quality and complete reference genome assemblies are fundamental for the application of genomics to biology, disease, and biodiversity conservation. However, such assemblies are available for only a few non-microbial species1-4. To address this issue, the international Genome 10K (G10K) consortium5,6 has worked over a five-year period to evaluate and develop cost-effective methods for assembling highly accurate and nearly complete reference genomes. Here we present lessons learned from generating assemblies for 16 species that represent six major vertebrate lineages. We confirm that long-read sequencing technologies are essential for maximizing genome quality, and that unresolved complex repeats and haplotype heterozygosity are major sources of assembly error when not handled correctly. Our assemblies correct substantial errors, add missing sequence in some of the best historical reference genomes, and reveal biological discoveries. These include the identification of many false gene duplications, increases in gene sizes, chromosome rearrangements that are specific to lineages, a repeated independent chromosome breakpoint in bat genomes, and a canonical GC-rich pattern in protein-coding genes and their regulatory regions. Adopting these lessons, we have embarked on the Vertebrate Genomes Project (VGP), an international effort to generate high-quality, complete reference genomes for all of the roughly 70,000 extant vertebrate species and to help to enable a new era of discovery across the life sciences.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Vertebrados / Genoma / Genómica Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Nature Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Vertebrados / Genoma / Genómica Tipo de estudio: Prognostic_studies Límite: Animals Idioma: En Revista: Nature Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos
...