Phosphorylation of protein kinase Cδ Tyr311 positively regulates thromboxane generation in platelets.
J Biol Chem
; 296: 100720, 2021.
Article
en En
| MEDLINE
| ID: mdl-33932405
Platelets are key mediators of physiological hemostasis and pathological thrombosis, whose function must be carefully balanced by signaling downstream of receptors such as protease-activated receptor (PAR)4. Protein kinase C (PKC) is known to regulate various aspects of platelet function. For instance, PKCδ is known to regulate dense granule secretion, which is important for platelet activation. However, the mechanism by which PKCδ regulates this process as well as other facets of platelet activity is unknown. We speculated that the way PKCδ regulates platelet function may be because of the phosphorylation of tyrosine residues on PKCδ. We investigated phosphorylation of PKCδ following glycoprotein VI-mediated and PAR4-mediated platelet activation and found that Y311 is selectively phosphorylated when PAR4 is activated in human platelets. Therefore, we generated PKCδ Y311F knock-in mice, which are viable and have no gross abnormalities. However, PKCδY311F mice have significantly enhanced tail-bleeding times compared with WT littermate controls, which means hemostasis is interrupted. Furthermore, PKCδY311F mice exhibit longer time to carotid artery occlusion compared with WT control using a ferric chloride in vivo thrombosis model, indicating that the phosphorylation of PKCδ Y311 is prothrombotic. Washed platelets from PKCδY311F mice have reduced reactivity after stimulation with a PAR-4 agonist indicating its importance in platelet signaling. The phenotype observed in Y311F mouse platelets is because of reduced thromboxane generation, as an inhibitor of thromboxane generation equalizes the PKCδY311F platelet response to that of WT. Therefore, phosphorylation of PKCδ on Y311 is important for regulation of platelet function and specifically thromboxane generation, which reinforces platelet activation.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Tirosina
/
Plaquetas
/
Tromboxanos
/
Proteína Quinasa C-delta
Límite:
Animals
/
Humans
Idioma:
En
Revista:
J Biol Chem
Año:
2021
Tipo del documento:
Article
País de afiliación:
Estados Unidos