Your browser doesn't support javascript.
loading
Serotonin 5-HT7 receptors require cyclin-dependent kinase 5 to rescue hippocampal synaptic plasticity in a mouse model of Fragile X Syndrome.
Costa, Lara; Tempio, Alessandra; Lacivita, Enza; Leopoldo, Marcello; Ciranna, Lucia.
Afiliación
  • Costa L; Department of Clinical and Experimental Medicine, University of Messina, Messina, Italy.
  • Tempio A; Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
  • Lacivita E; Department of Pharmacy, University of Bari, Bari, Italy.
  • Leopoldo M; Department of Pharmacy, University of Bari, Bari, Italy.
  • Ciranna L; Department of Biomedical and Biotechnological Sciences, University of Catania, Catania, Italy.
Eur J Neurosci ; 2021 May 05.
Article en En | MEDLINE | ID: mdl-33949019
Fragile X Syndrome is a genetic form of intellectual disability associated with autism, epilepsy and mood disorders. Electrophysiology studies in Fmr1 knockout (KO) mice, a murine model of Fragile X Syndrome, have demonstrated alterations of synaptic plasticity, with exaggerated long-term depression induced by activation of metabotropic glutamate receptors (mGluR-LTD) in Fmr1 KO hippocampus. We have previously demonstrated that activation of serotonin 5-HT7 receptors reverses mGluR-LTD in the hippocampus of wild-type and Fmr1 KO mice, thus correcting a synaptic dysfunction typically observed in this disease model. Here we show that pharmacological inhibition of cyclin-dependent kinase 5 (Cdk5, a signaling molecule recently shown to be a modulator of brain synaptic plasticity) enhanced mGluR-LTD in wild-type hippocampal neurons, which became comparable to exaggerated mGluR-LTD observed in Fmr1 KO neurons. Furthermore, Cdk5 inhibition prevented 5-HT7 receptor-mediated reversal of mGluR-LTD both in wild-type and in Fmr1 KO neurons. Our results show that Cdk5 modulates hippocampal synaptic plasticity. 5-HT7 receptors require Cdk5 to modulate synaptic plasticity in wild-type and rescue abnormal plasticity in Fmr1 KO neurons, pointing out Cdk5 as a possible novel target in Fragile X Syndrome.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Eur J Neurosci Asunto de la revista: NEUROLOGIA Año: 2021 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Eur J Neurosci Asunto de la revista: NEUROLOGIA Año: 2021 Tipo del documento: Article País de afiliación: Italia
...