Your browser doesn't support javascript.
loading
Hippocampal single-voxel MR spectroscopy with a long echo time at 3 T using semi-LASER sequence.
Gajdosík, Martin; Landheer, Karl; Swanberg, Kelley M; Adlparvar, Fatemeh; Madelin, Guillaume; Bogner, Wolfgang; Juchem, Christoph; Kirov, Ivan I.
Afiliación
  • Gajdosík M; Center for Advanced Imaging Innovation and Research (CAI2R), Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA.
  • Landheer K; Department of Biomedical Engineering, Columbia University Fu Foundation School of Engineering and Applied Science, New York, New York, USA.
  • Swanberg KM; Department of Biomedical Engineering, Columbia University Fu Foundation School of Engineering and Applied Science, New York, New York, USA.
  • Adlparvar F; Department of Biomedical Engineering, Columbia University Fu Foundation School of Engineering and Applied Science, New York, New York, USA.
  • Madelin G; Center for Advanced Imaging Innovation and Research (CAI2R), Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA.
  • Bogner W; Center for Advanced Imaging Innovation and Research (CAI2R), Bernard and Irene Schwartz Center for Biomedical Imaging, Department of Radiology, New York University Grossman School of Medicine, New York, New York, USA.
  • Juchem C; High-Field MR Center, Department of Biomedical Imaging and Image-Guided Therapy, Medical University of Vienna, Vienna, Austria.
  • Kirov II; Department of Biomedical Engineering, Columbia University Fu Foundation School of Engineering and Applied Science, New York, New York, USA.
NMR Biomed ; 34(8): e4538, 2021 08.
Article en En | MEDLINE | ID: mdl-33956374
The hippocampus is one of the most challenging brain regions for proton MR spectroscopy (MRS) applications. Moreover, quantification of J-coupled species such as myo-inositol (m-Ins) and glutamate + glutamine (Glx) is affected by the presence of macromolecular background. While long echo time (TE) MRS eliminates the macromolecules, it also decreases the m-Ins and Glx signal and, as a result, these metabolites are studied mainly with short TE. Here, we investigate the feasibility of reproducibly measuring their concentrations at a long TE of 120 ms, using a semi-adiabatic localization by adiabatic selective refocusing (sLASER) sequence, as this sequence was recently recommended as a standard for clinical MRS. Gradient offset-independent adiabatic refocusing pulses were implemented, and an optimal long TE for the detection of m-Ins and Glx was determined using the T2 relaxation times of macromolecules. Metabolite concentrations and their coefficients of variation (CVs) were obtained for a 3.4-mL voxel centered on the left hippocampus on 3-T MR systems at two different sites with three healthy subjects (aged 32.5 ± 10.2 years [mean ± standard deviation]) per site, with each subject scanned over two sessions, and with each session comprising three scans. Concentrations of m-Ins, choline, creatine, Glx and N-acetyl-aspartate were 5.4 ± 1.5, 1.7 ± 0.2, 5.8 ± 0.3, 11.6 ± 1.2 and 5.9 ± 0.4 mM (mean ± standard deviation), respectively. Their respective mean within-session CVs were 14.5% ± 5.9%, 6.5% ± 5.3%, 6.0% ± 3.4%, 10.6% ± 6.2% and 3.5% ± 1.4%, and their mean within-subject CVs were 17.8% ± 18.2%, 7.5% ± 6.3%, 7.4% ± 6.4%, 12.4% ± 5.3% and 4.8% ± 3.0%. The between-subject CVs were 25.0%, 12.3%, 5.3%, 10.7% and 6.4%, respectively. Hippocampal long-TE sLASER single voxel spectroscopy can provide macromolecule-independent assessment of all major metabolites including Glx and m-Ins.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Espectroscopía de Resonancia Magnética / Hipocampo Tipo de estudio: Prognostic_studies Límite: Adult / Female / Humans / Male Idioma: En Revista: NMR Biomed Asunto de la revista: DIAGNOSTICO POR IMAGEM / MEDICINA NUCLEAR Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Espectroscopía de Resonancia Magnética / Hipocampo Tipo de estudio: Prognostic_studies Límite: Adult / Female / Humans / Male Idioma: En Revista: NMR Biomed Asunto de la revista: DIAGNOSTICO POR IMAGEM / MEDICINA NUCLEAR Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos
...