Your browser doesn't support javascript.
loading
Soft-sensor development for monitoring the lysine fermentation process.
Tokuyama, Kento; Shimodaira, Yoshiki; Kodama, Yohei; Matsui, Ryuzo; Kusunose, Yasuhiro; Fukushima, Shunsuke; Nakai, Hiroaki; Tsuji, Yuichiro; Toya, Yoshihiro; Matsuda, Fumio; Shimizu, Hiroshi.
Afiliación
  • Tokuyama K; DX Promotion Department, Ajinomoto Co., Inc., 1-15-1 Kyobashi, Chuo-ku, Tokyo 104-8315, Japan.
  • Shimodaira Y; DX Promotion Department, Ajinomoto Co., Inc., 1-15-1 Kyobashi, Chuo-ku, Tokyo 104-8315, Japan.
  • Kodama Y; Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-8681, Japan.
  • Matsui R; Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-8681, Japan.
  • Kusunose Y; Institute for Innovation, Ajinomoto Co., Inc., 1-1 Suzuki-cho, Kawasaki-ku, Kawasaki, Kanagawa 210-8681, Japan.
  • Fukushima S; Ajinomoto Animal Nutrition Europe S.A.S., 60, rue de Vaux, CS18018, 80084 Amiens Cedex 2, France.
  • Nakai H; Ajinomoto Animal Nutrition Europe S.A.S., 60, rue de Vaux, CS18018, 80084 Amiens Cedex 2, France.
  • Tsuji Y; Ajinomoto Animal Nutrition Europe S.A.S., 60, rue de Vaux, CS18018, 80084 Amiens Cedex 2, France.
  • Toya Y; Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
  • Matsuda F; Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan.
  • Shimizu H; Department of Bioinformatic Engineering, Graduate School of Information Science and Technology, Osaka University, 1-5 Yamadaoka, Suita, Osaka 565-0871, Japan. Electronic address: shimizu@ist.osaka-u.ac.jp.
J Biosci Bioeng ; 132(2): 183-189, 2021 Aug.
Article en En | MEDLINE | ID: mdl-33958301
Monitoring cell growth and target production in working fermentors is important for stabilizing high level production. In this study, we developed a novel soft sensor for estimating the concentration of a target product (lysine), substrate (sucrose), and bacterial cell in commercially working fermentors using machine learning combined with available on-line process data. The lysine concentration was accurately estimated in both linear and nonlinear models; however, the nonlinear models were also suitable for estimating the concentrations of sucrose and bacterial cells. Data enhancement by time interpolation improved the model prediction accuracy and eliminated unnecessary fluctuations. Furthermore, the soft sensor developed based on the dataset of the same process parameters in multiple fermentor tanks successfully estimated the fermentation behavior of each tank. Machine learning-based soft sensors may represent a novel monitoring system for digital transformation in the field of biotechnological processes.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Reactores Biológicos / Fermentación Tipo de estudio: Prognostic_studies Idioma: En Revista: J Biosci Bioeng Asunto de la revista: ENGENHARIA BIOMEDICA / MICROBIOLOGIA Año: 2021 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Reactores Biológicos / Fermentación Tipo de estudio: Prognostic_studies Idioma: En Revista: J Biosci Bioeng Asunto de la revista: ENGENHARIA BIOMEDICA / MICROBIOLOGIA Año: 2021 Tipo del documento: Article País de afiliación: Japón
...