Your browser doesn't support javascript.
loading
Application of a sub-0.1-mm3 implantable mote for in vivo real-time wireless temperature sensing.
Shi, Chen; Andino-Pavlovsky, Victoria; Lee, Stephen A; Costa, Tiago; Elloian, Jeffrey; Konofagou, Elisa E; Shepard, Kenneth L.
Afiliación
  • Shi C; Department of Electrical Engineering, Columbia University, New York, NY 10027, USA.
  • Andino-Pavlovsky V; Department of Electrical Engineering, Columbia University, New York, NY 10027, USA.
  • Lee SA; Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
  • Costa T; Department of Electrical Engineering, Columbia University, New York, NY 10027, USA.
  • Elloian J; Department of Microelectronics, Delft University of Technology, 2628 CD Delft, Netherlands.
  • Konofagou EE; Department of Electrical Engineering, Columbia University, New York, NY 10027, USA.
  • Shepard KL; Department of Biomedical Engineering, Columbia University, New York, NY 10027, USA.
Sci Adv ; 7(19)2021 05.
Article en En | MEDLINE | ID: mdl-33962948
ABSTRACT
There has been increasing interest in wireless, miniaturized implantable medical devices for in vivo and in situ physiological monitoring. Here, we present such an implant that uses a conventional ultrasound imager for wireless powering and data communication and acts as a probe for real-time temperature sensing, including the monitoring of body temperature and temperature changes resulting from therapeutic application of ultrasound. The sub-0.1-mm3, sub-1-nW device, referred to as a mote, achieves aggressive miniaturization through the monolithic integration of a custom low-power temperature sensor chip with a microscale piezoelectric transducer fabricated on top of the chip. The small displaced volume of these motes allows them to be implanted or injected using minimally invasive techniques with improved biocompatibility. We demonstrate their sensing functionality in vivo for an ultrasound neurostimulation procedure in mice. Our motes have the potential to be adapted to the distributed and localized sensing of other clinically relevant physiological parameters.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Adv Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Adv Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos
...