Your browser doesn't support javascript.
loading
Conformational Dynamics of Poly(T) Single-Stranded DNA at the Single-Molecule Level.
Kim, Shi Ho; Lee, Tae-Hee.
Afiliación
  • Kim SH; Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
  • Lee TH; Department of Chemistry, The Pennsylvania State University, University Park, Pennsylvania 16802, United States.
J Phys Chem Lett ; 12(19): 4576-4584, 2021 May 20.
Article en En | MEDLINE | ID: mdl-33970634
ABSTRACT
The conformational dynamics of single-stranded DNA (ss-DNA) are implicated in the mechanisms of several key biological processes such as DNA replication and damage repair and have been modeled with those of semiflexible or flexible polymer. The high flexibility and customizability of ss-DNA also make it an excellent polymeric material for materials engineering. Polythymidine (poly(T)) is an excellent model ss-DNA as a flexible polymer since it does not form any secondary structure. However, only limited experimental results have been reported of poly(T) conformational dynamics with a very short length that is not relevant to the aforementioned processes and applications. Here, we provide the first experimental results of the conformational dynamics of poly(T) with lengths in the range of 130-170 nucleotides at the single-molecule level. Our experiments are based on single-molecule FRET and a DNA hairpin structure of which the folding kinetics are governed by the conformational dynamics of poly(T). We found that the folding kinetics deviate far from those of a flexible polymer model with a harmonic bending potential. To this end, we derived a simple model for the kinetics of DNA hairpin folding from the self-avoiding-walk (SAW). Our model describes the conformational dynamics of poly(T) very well and enables estimation of the conformational dimensionality. The estimated dimensionalities suggest that ss-DNA is completely flexible at 100 mM or a higher NaCl concentration, but not at 50 mM. These results will help understand the conformational dynamics of ss-DNA implicated in several key biological processes and maximize the utility of ss-DNA for materials engineering. Also, our system and model provide an excellent platform to investigate the conformational dynamics of ss-DNA.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Poli T / ADN / Simulación de Dinámica Molecular Idioma: En Revista: J Phys Chem Lett Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Poli T / ADN / Simulación de Dinámica Molecular Idioma: En Revista: J Phys Chem Lett Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos
...