Your browser doesn't support javascript.
loading
Bidirectional propagation of low frequency oscillations over the human hippocampal surface.
Kleen, Jonathan K; Chung, Jason E; Sellers, Kristin K; Zhou, Jenny; Triplett, Michael; Lee, Kye; Tooker, Angela; Haque, Razi; Chang, Edward F.
Afiliación
  • Kleen JK; Department of Neurology, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
  • Chung JE; Department of Neurological Surgery, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
  • Sellers KK; Department of Neurological Surgery, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA.
  • Zhou J; Lawrence Livermore National Laboratories, Livermore, CA, USA.
  • Triplett M; Lawrence Livermore National Laboratories, Livermore, CA, USA.
  • Lee K; Lawrence Livermore National Laboratories, Livermore, CA, USA.
  • Tooker A; Lawrence Livermore National Laboratories, Livermore, CA, USA.
  • Haque R; Lawrence Livermore National Laboratories, Livermore, CA, USA.
  • Chang EF; Department of Neurological Surgery, Weill Institute for Neurosciences, University of California San Francisco, San Francisco, CA, USA. Edward.Chang@ucsf.edu.
Nat Commun ; 12(1): 2764, 2021 05 12.
Article en En | MEDLINE | ID: mdl-33980852
The hippocampus is diversely interconnected with other brain systems along its axis. Cycles of theta-frequency activity are believed to propagate from the septal to temporal pole, yet it is unclear how this one-way route supports the flexible cognitive capacities of this structure. We leveraged novel thin-film microgrid arrays conformed to the human hippocampal surface to track neural activity two-dimensionally in vivo. All oscillation frequencies identified between 1-15 Hz propagated across the tissue. Moreover, they dynamically shifted between two roughly opposite directions oblique to the long axis. This predominant propagation axis was mirrored across participants, hemispheres, and consciousness states. Directionality was modulated in a participant who performed a behavioral task, and it could be predicted by wave amplitude topography over the hippocampal surface. Our results show that propagation directions may thus represent distinct meso-scale network computations, operating along versatile spatiotemporal processing routes across the hippocampal body.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ritmo Teta / Hipocampo Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ritmo Teta / Hipocampo Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos
...