Your browser doesn't support javascript.
loading
Flow-Field-Assisted Dielectrophoretic Microchips for High-Efficiency Sheathless Particle/Cell Separation with Dual Mode.
Shen, Shitao; Yi, Zichuan; Li, Xing; Xie, Shuting; Jin, Mingliang; Zhou, Guofu; Yan, Zhibin; Shui, Lingling.
Afiliación
  • Shen S; International Joint Laboratory of Optofluidic Technology and System, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics and School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510
  • Yi Z; International Joint Laboratory of Optofluidic Technology and System, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics and School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510
  • Li X; College of Electron and Information, University of Electronic Science and Technology of China, Zhongshan Institute, Zhongshan 528402, China.
  • Xie S; International Joint Laboratory of Optofluidic Technology and System, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics and School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510
  • Jin M; International Joint Laboratory of Optofluidic Technology and System, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics and School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510
  • Zhou G; International Joint Laboratory of Optofluidic Technology and System, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics and School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510
  • Yan Z; International Joint Laboratory of Optofluidic Technology and System, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics and School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510
  • Shui L; International Joint Laboratory of Optofluidic Technology and System, National Center for International Research on Green Optoelectronics, South China Academy of Advanced Optoelectronics and School of Information and Optoelectronic Science and Engineering, South China Normal University, Guangzhou 510
Anal Chem ; 93(21): 7606-7615, 2021 06 01.
Article en En | MEDLINE | ID: mdl-34003009
ABSTRACT
Prefocusing of cell mixtures through sheath flow is a common technique used for continuous and high-efficiency dielectrophoretic (DEP) cell separation. However, it usually limits the separation flow velocity and requires a complex multichannel fluid control system that hinders the integration of a DEP separator with other microfluidic functionalities for comprehensive biomedical applications. Here, we propose and develop a high-efficiency, sheathless particle/cell separation method without prefocusing based on flow-field-assisted DEP by combining the effects of AC electric field (E-field) and flow field (F-field). A hollow lemon-shaped electrode array is designed to generate a long-range E-field gradient in the microchannel, which can effectively induce lateral displacements of particles/cells in a continuous flow. A series of arc-shaped protrusion structures is designed along the microchannel to form a F-field, which can effectively guide the particles/cells toward the targeted E-field region without prefocusing. By tuning the E-field, two distinct modes can be realized and switched in one single device, including the sheathless separation (ShLS) and the adjustable particle mixing ratio (AMR) modes. In the ShLS mode, we have achieved the continuous separation of breast cancer cells from erythrocytes with a recovery rate of 95.5% and the separation of polystyrene particles from yeast cells with a purity of 97.1% at flow velocities over 2.59 mm/s in a 2 cm channel under optimized conditions. The AMR mode provides a strategy for controlling the mixing ratio of different particles/cells as a well-defined pretreatment method for biomedical research studies. The proposed microchip is easy to use and displays high versatility for biological and medical applications.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Técnicas Analíticas Microfluídicas Idioma: En Revista: Anal Chem Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Técnicas Analíticas Microfluídicas Idioma: En Revista: Anal Chem Año: 2021 Tipo del documento: Article
...