Your browser doesn't support javascript.
loading
Real-time deep artifact suppression using recurrent U-Nets for low-latency cardiac MRI.
Jaubert, Olivier; Montalt-Tordera, Javier; Knight, Dan; Coghlan, Gerry J; Arridge, Simon; Steeden, Jennifer A; Muthurangu, Vivek.
Afiliación
  • Jaubert O; Department of Computer Science, University College London, London, United Kingdom.
  • Montalt-Tordera J; UCL Centre for Translational Cardiovascular Imaging, University College London, London, United Kingdom.
  • Knight D; UCL Centre for Translational Cardiovascular Imaging, University College London, London, United Kingdom.
  • Coghlan GJ; UCL Centre for Translational Cardiovascular Imaging, University College London, London, United Kingdom.
  • Arridge S; Department of Cardiology, Royal Free London NHS Foundation Trust, London, United Kingdom.
  • Steeden JA; UCL Centre for Translational Cardiovascular Imaging, University College London, London, United Kingdom.
  • Muthurangu V; Department of Cardiology, Royal Free London NHS Foundation Trust, London, United Kingdom.
Magn Reson Med ; 86(4): 1904-1916, 2021 10.
Article en En | MEDLINE | ID: mdl-34032308
PURPOSE: Real-time low latency MRI is performed to guide various cardiac interventions. Real-time acquisitions often require iterative image reconstruction strategies, which lead to long reconstruction times. In this study, we aim to reconstruct highly undersampled radial real-time data with low latency using deep learning. METHODS: A 2D U-Net with convolutional long short-term memory layers is proposed to exploit spatial and preceding temporal information to reconstruct highly accelerated tiny golden radial data with low latency. The network was trained using a dataset of breath-hold CINE data (including 770 time series from 7 different orientations). Synthetic paired data were created by retrospectively undersampling the magnitude images, and the network was trained to recover the target images. In the spirit of interventional imaging, the network was trained and tested for varying acceleration rates and orientations. Data were prospectively acquired and reconstructed in real time in 1 healthy subject interactively and in 3 patients who underwent catheterization. Images were visually compared to sliding window and compressed sensing reconstructions and a conventional Cartesian real-time sequence. RESULTS: The proposed network generalized well to different acceleration rates and unseen orientations for all considered metrics in simulated data (less than 4% reduction in structural similarity index compared to similar acceleration and orientation-specific networks). The proposed reconstruction was demonstrated interactively, successfully depicting catheters in vivo with low latency (39 ms, including 19 ms for deep artifact suppression) and an image quality comparing favorably to other reconstructions. CONCLUSION: Deep artifact suppression was successfully demonstrated in the time-critical application of non-Cartesian real-time interventional cardiac MR.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Artefactos Tipo de estudio: Observational_studies Límite: Humans Idioma: En Revista: Magn Reson Med Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2021 Tipo del documento: Article País de afiliación: Reino Unido

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador / Artefactos Tipo de estudio: Observational_studies Límite: Humans Idioma: En Revista: Magn Reson Med Asunto de la revista: DIAGNOSTICO POR IMAGEM Año: 2021 Tipo del documento: Article País de afiliación: Reino Unido
...