Your browser doesn't support javascript.
loading
A controllable dual-catapult system inspired by the biomechanics of the dragonfly larvae's predatory strike.
Büsse, Sebastian; Koehnsen, Alexander; Rajabi, Hamed; Gorb, Stanislav N.
Afiliación
  • Büsse S; Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany. sbuesse@zoologie.uni-kiel.de.
  • Koehnsen A; Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany.
  • Rajabi H; Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany.
  • Gorb SN; Department of Functional Morphology and Biomechanics, Institute of Zoology, Kiel University, Am Botanischen Garten 9, 24118 Kiel, Germany.
Sci Robot ; 6(50)2021 01 20.
Article en En | MEDLINE | ID: mdl-34043578
ABSTRACT
The biomechanics underlying the predatory strike of dragonfly larvae is not yet understood. Dragonfly larvae are aquatic ambush predators, capturing their prey with a strongly modified extensible mouthpart. The current theory of hydraulic pressure being the driving force of the predatory strike can be refuted by our manipulation experiments and reinterpretation of former studies. Here, we report evidence for an independently loaded synchronized dual-catapult system. To power the ballistic movement of a single specialized mouthpart, two independently loaded springs simultaneously release and actuate two separate joints in a kinematic chain. Energy for the movement is stored by straining an elastic structure at each joint and, possibly, the surrounding cuticle, which is preloaded by muscle contraction. As a proof of concept, we developed a bioinspired robotic model resembling the morphology and functional principle of the extensible mouthpart. Understanding the biomechanics of the independently loaded synchronized dual-catapult system found in dragonfly larvae can be used to control the extension direction and, thereby, thrust vector of a power-modulated robotic system.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Robótica / Odonata Límite: Animals Idioma: En Revista: Sci Robot Año: 2021 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Robótica / Odonata Límite: Animals Idioma: En Revista: Sci Robot Año: 2021 Tipo del documento: Article País de afiliación: Alemania
...