Your browser doesn't support javascript.
loading
Deep Learning to Predict Cardiac Magnetic Resonance-Derived Left Ventricular Mass and Hypertrophy From 12-Lead ECGs.
Khurshid, Shaan; Friedman, Samuel; Pirruccello, James P; Di Achille, Paolo; Diamant, Nathaniel; Anderson, Christopher D; Ellinor, Patrick T; Batra, Puneet; Ho, Jennifer E; Philippakis, Anthony A; Lubitz, Steven A.
Afiliación
  • Khurshid S; Division of Cardiology (S.K., J.P.P., J.E.H.), Massachusetts General Hospital, Boston.
  • Friedman S; Cardiovascular Disease Initiative (S.K., J.P.P., C.D.A., P.T.E., J.E.H., S.A.L.), Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge.
  • Pirruccello JP; Data Sciences Platform (S.F., P.D.A., N.D., P.B., A.A.P.), Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge.
  • Di Achille P; Division of Cardiology (S.K., J.P.P., J.E.H.), Massachusetts General Hospital, Boston.
  • Diamant N; Cardiovascular Disease Initiative (S.K., J.P.P., C.D.A., P.T.E., J.E.H., S.A.L.), Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge.
  • Anderson CD; Data Sciences Platform (S.F., P.D.A., N.D., P.B., A.A.P.), Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge.
  • Ellinor PT; Data Sciences Platform (S.F., P.D.A., N.D., P.B., A.A.P.), Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge.
  • Batra P; Center for Genomic Medicine (C.D.A.), Massachusetts General Hospital, Boston.
  • Ho JE; Henry and Allison McCance Center for Brain Health (C.D.A.), Massachusetts General Hospital, Boston.
  • Philippakis AA; Cardiovascular Disease Initiative (S.K., J.P.P., C.D.A., P.T.E., J.E.H., S.A.L.), Broad Institute of Harvard and the Massachusetts Institute of Technology, Cambridge.
  • Lubitz SA; Cardiac Arrhythmia Service (P.T.E.), Massachusetts General Hospital, Boston.
Circ Cardiovasc Imaging ; 14(6): e012281, 2021 06.
Article en En | MEDLINE | ID: mdl-34126762
BACKGROUND: Classical methods for detecting left ventricular (LV) hypertrophy (LVH) using 12-lead ECGs are insensitive. Deep learning models using ECG to infer cardiac magnetic resonance (CMR)-derived LV mass may improve LVH detection. METHODS: Within 32 239 individuals of the UK Biobank prospective cohort who underwent CMR and 12-lead ECG, we trained a convolutional neural network to predict CMR-derived LV mass using 12-lead ECGs (left ventricular mass-artificial intelligence [LVM-AI]). In independent test sets (UK Biobank [n=4903] and Mass General Brigham [MGB, n=1371]), we assessed correlation between LVM-AI predicted and CMR-derived LV mass and compared LVH discrimination using LVM-AI versus traditional ECG-based rules (ie, Sokolow-Lyon, Cornell, lead aVL rule, or any ECG rule). In the UK Biobank and an ambulatory MGB cohort (MGB outcomes, n=28 612), we assessed associations between LVM-AI predicted LVH and incident cardiovascular outcomes using age- and sex-adjusted Cox regression. RESULTS: LVM-AI predicted LV mass correlated with CMR-derived LV mass in both test sets, although correlation was greater in the UK Biobank (r=0.79) versus MGB (r=0.60, P<0.001 for both). When compared with any ECG rule, LVM-AI demonstrated similar LVH discrimination in the UK Biobank (LVM-AI c-statistic 0.653 [95% CI, 0.608 -0.698] versus any ECG rule c-statistic 0.618 [95% CI, 0.574 -0.663], P=0.11) and superior discrimination in MGB (0.621; 95% CI, 0.592 -0.649 versus 0.588; 95% CI, 0.564 -0.611, P=0.02). LVM-AI-predicted LVH was associated with incident atrial fibrillation, myocardial infarction, heart failure, and ventricular arrhythmias. CONCLUSIONS: Deep learning-inferred LV mass estimates from 12-lead ECGs correlate with CMR-derived LV mass, associate with incident cardiovascular disease, and may improve LVH discrimination compared to traditional ECG rules.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Inteligencia Artificial / Hipertrofia Ventricular Izquierda / Electrocardiografía / Aprendizaje Profundo / Ventrículos Cardíacos Tipo de estudio: Clinical_trials / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Female / Humans / Male / Middle aged Idioma: En Revista: Circ Cardiovasc Imaging Asunto de la revista: ANGIOLOGIA / CARDIOLOGIA / DIAGNOSTICO POR IMAGEM Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Inteligencia Artificial / Hipertrofia Ventricular Izquierda / Electrocardiografía / Aprendizaje Profundo / Ventrículos Cardíacos Tipo de estudio: Clinical_trials / Observational_studies / Prognostic_studies / Risk_factors_studies Límite: Female / Humans / Male / Middle aged Idioma: En Revista: Circ Cardiovasc Imaging Asunto de la revista: ANGIOLOGIA / CARDIOLOGIA / DIAGNOSTICO POR IMAGEM Año: 2021 Tipo del documento: Article
...