Your browser doesn't support javascript.
loading
Leveraging network analysis to evaluate biomedical named entity recognition tools.
García Del Valle, Eduardo P; Lagunes García, Gerardo; Prieto Santamaría, Lucía; Zanin, Massimiliano; Menasalvas Ruiz, Ernestina; Rodríguez-González, Alejandro.
Afiliación
  • García Del Valle EP; ETS de Ingenieros Informáticos, Universidad Politécnica de Madrid, Boadilla del Monte, Madrid, Spain. ep.garcia@alumnos.upm.es.
  • Lagunes García G; ETS de Ingenieros Informáticos, Universidad Politécnica de Madrid, Boadilla del Monte, Madrid, Spain.
  • Prieto Santamaría L; Centro de Tecnología Biomédica, ETS Ingenieros Informáticos, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain.
  • Zanin M; Centro de Tecnología Biomédica, ETS Ingenieros Informáticos, Universidad Politécnica de Madrid, Pozuelo de Alarcón, Madrid, Spain.
  • Menasalvas Ruiz E; Instituto de Física Interdisciplinar y Sistemas Complejos IFISC (CSIC-UIB), Campus UIB, Palma de Mallorca, Spain.
  • Rodríguez-González A; ETS de Ingenieros Informáticos, Universidad Politécnica de Madrid, Boadilla del Monte, Madrid, Spain.
Sci Rep ; 11(1): 13537, 2021 06 29.
Article en En | MEDLINE | ID: mdl-34188248
The ever-growing availability of biomedical text sources has resulted in a boost in clinical studies based on their exploitation. Biomedical named-entity recognition (bio-NER) techniques have evolved remarkably in recent years and their application in research is increasingly successful. Still, the disparity of tools and the limited available validation resources are barriers preventing a wider diffusion, especially within clinical practice. We here propose the use of omics data and network analysis as an alternative for the assessment of bio-NER tools. Specifically, our method introduces quality criteria based on edge overlap and community detection. The application of these criteria to four bio-NER solutions yielded comparable results to strategies based on annotated corpora, without suffering from their limitations. Our approach can constitute a guide both for the selection of the best bio-NER tool given a specific task, and for the creation and validation of novel approaches.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Rep Año: 2021 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Rep Año: 2021 Tipo del documento: Article País de afiliación: España
...