Your browser doesn't support javascript.
loading
Comprehensive Analysis of Steel Slag as Aggregate for Road Construction: Experimental Testing and Environmental Impact Assessment.
Díaz-Piloneta, Marina; Terrados-Cristos, Marta; Álvarez-Cabal, Jose Valeriano; Vergara-González, Eliseo.
Afiliación
  • Díaz-Piloneta M; Project Engineering Department, University of Oviedo, 33004 Oviedo, Spain.
  • Terrados-Cristos M; Project Engineering Department, University of Oviedo, 33004 Oviedo, Spain.
  • Álvarez-Cabal JV; Project Engineering Department, University of Oviedo, 33004 Oviedo, Spain.
  • Vergara-González E; Project Engineering Department, University of Oviedo, 33004 Oviedo, Spain.
Materials (Basel) ; 14(13)2021 Jun 28.
Article en En | MEDLINE | ID: mdl-34203278
ABSTRACT
Blast Oxygen Furnace (BOF) slag represents one of the largest waste fractions from steelmaking. Therefore, slag valorisation technologies are of high importance regarding the use of slag as a secondary resource, both in the steel sector and in other sectors, such as the construction or cement industries. The main issue regarding the use of BOF slag is its volumetric instability in the presence of water; this hampers its use in sectors and requires a stabilisation pre-treatment. These treatments are also cost-inefficient and cause other environmental issues. This paper analyses the use of untreated BOF slag from a technical and environmental point of view, suggesting it as an alternative to natural aggregates in road surface layers and asphalt pavements. A comprehensive analysis of the requirements to be met by raw materials used in asphalt mixes was performed, and a pilot test was carried out with two different mixtures one mix with limestone as coarse aggregate and another with 15% BOF slag. Furthermore, the global warming impacts derived from each mix with different aggregates were measured by Life Cycle Analysis (LCA), and a transport sensitivity analysis was also performed. The results show how the utilization of BOF slag as coarse aggregate in road construction improves the technical performance of asphalt mixtures (Marshall Quotient 4.9 vs. 6.6). Moreover, the introduction of BOF slag into the asphalt mix as a coarse aggregate, instead of limestone, causes a carbon emissions reduction rate of more than 14%.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Materials (Basel) Año: 2021 Tipo del documento: Article País de afiliación: España

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Materials (Basel) Año: 2021 Tipo del documento: Article País de afiliación: España
...