Your browser doesn't support javascript.
loading
Development of Active Packaging to Extend the Shelf Life of Agaricus bisporus by Using Plasma Technology.
Chang, Chao-Kai; Cheng, Kuan-Chen; Hou, Chih-Yao; Wu, Yi-Shan; Hsieh, Chang-Wei.
Afiliación
  • Chang CK; College of Biotechnology and Bioresources, Da-Yeh University, 168 University Rd., Dacun, Changhua 51500, Taiwan.
  • Cheng KC; Graduate Institute of Food Science and Technology, National Taiwan University, 1, Sec 4, Roosevelt Road, Taipei 10617, Taiwan.
  • Hou CY; Institute of Biotechnology, National Taiwan University, 1, Sec 4, Roosevelt Road, Taipei 10617, Taiwan.
  • Wu YS; Department of Medical Research, China Medical University Hospital, Taichung 40400, Taiwan.
  • Hsieh CW; Department of Optometry, Asia University, 500, Lioufeng Rd., Wufeng, Taichung 41354, Taiwan.
Polymers (Basel) ; 13(13)2021 Jun 28.
Article en En | MEDLINE | ID: mdl-34203311
ABSTRACT
In this study, a preservation package that can extend the shelf life of Agaricus bisporus was developed using plasma modification combined with low-density polyethylene (LDPE), collagen (COL), and carboxymethyl cellulose (CMC). Out results showed that the selectivity of LDPE to gas can be controlled by plasma modification combined with coating of different concentrations of CMC and COL. Packaging test results applied to A. bisporus showed that 3% and 5% of CMC and COL did not significantly inhibit polyphenol oxidase and ß-1,3-glucanase, indicating no significant effect on structural integrity and oxidative browning. The use of 0.5% and 1.0% CMC and COL can effectively inhibit the polyphenol oxidase and ß-1,3-glucanase activity of A. bisporus, leading to improved effects in browning inhibition and structural integrity maintenance. P-1.0COL can effectively maintain gas composition in the package (carbon dioxide 10-15% and oxygen 8-15%) and catalase activity during storage, thereby reducing the oxidative damage caused by respiration of A. bisporus. The current study confirmed that the use of plasma modification technology combined with 1.0% COL can be used in preservation packaging by regulating the respiration of A. bisporus, thus extending its shelf life from 7 to 21 days.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Polymers (Basel) Año: 2021 Tipo del documento: Article País de afiliación: Taiwán

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Polymers (Basel) Año: 2021 Tipo del documento: Article País de afiliación: Taiwán
...