Your browser doesn't support javascript.
loading
Wettability of Magnetite Nanoparticles Guides Growth from Stabilized Amorphous Ferrihydrite.
Kuhrts, Lucas; Prévost, Sylvain; Chevrier, Daniel M; Pekker, Péter; Spaeker, Oliver; Egglseder, Mathias; Baumgartner, Jens; Pósfai, Mihály; Faivre, Damien.
Afiliación
  • Kuhrts L; Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
  • Prévost S; Institut Laue-Langevin, 71 avenue des Martyrs, CS 20156, 38042 Cedex 9 Grenoble, France.
  • Chevrier DM; Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
  • Pekker P; CNRS, CEA, BIAM, Aix-Marseille University, 13108 Saint-Paul-lez-Durance, France.
  • Spaeker O; Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Egyetem u. 10, H8200 Veszprém, Hungary.
  • Egglseder M; Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
  • Baumgartner J; Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
  • Pósfai M; Max Planck Institute of Colloids and Interfaces, Am Mühlenberg 1, 14476 Potsdam, Germany.
  • Faivre D; Research Institute of Biomolecular and Chemical Engineering, University of Pannonia, Egyetem u. 10, H8200 Veszprém, Hungary.
J Am Chem Soc ; 143(29): 10963-10969, 2021 07 28.
Article en En | MEDLINE | ID: mdl-34264055
ABSTRACT
Crystal formation via amorphous precursors is a long-sought-after gateway to engineer nanoparticles with well-controlled size and morphology. Biomineralizing organisms, like magnetotactic bacteria, follow such a nonclassical crystallization pathway to produce magnetite nanoparticles with sophistication unmatched by synthetic efforts at ambient conditions. Here, using in situ small-angle X-ray scattering, we demonstrate how the addition of poly(arginine) in the synthetic formation of magnetite nanoparticles induces a biomineralization-reminiscent pathway. The addition of poly(arginine) stabilizes an amorphous ferrihydrite precursor, shifting the magnetite formation pathway from thermodynamic to kinetic control. Altering the energetic landscape of magnetite formation by catalyzing the pH-dependent precursor attachment, we tune magnetite nanoparticle size continuously, exceeding sizes observed in magnetotactic bacteria. This mechanistic shift we uncover here further allows for crystal morphology control by adjusting the pH-dependent interfacial interaction between liquidlike ferrihydrite and nascent magnetite nanoparticles, establishing a new strategy to control nanoparticle morphology. Synthesizing compact single crystals at wetting conditions and unique semicontinuous single-crystalline nanoparticles at dewetting conditions in combination with an improved control over magnetite crystallite size, we demonstrate the versatility of bio-inspired, kinetically controlled nanoparticle formation pathways.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Compuestos Férricos / Nanopartículas de Magnetita Idioma: En Revista: J Am Chem Soc Año: 2021 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Compuestos Férricos / Nanopartículas de Magnetita Idioma: En Revista: J Am Chem Soc Año: 2021 Tipo del documento: Article País de afiliación: Alemania
...