Your browser doesn't support javascript.
loading
A Hierarchically Ordered Mesoporous-Carbon-Supported Iron Sulfide Anode for High-Rate Na-Ion Storage.
Haridas, Anupriya K; Angulakshmi, Natarajan; Stephan, Arul Manuel; Lee, Younki; Ahn, Jou-Hyeon.
Afiliación
  • Haridas AK; Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Korea.
  • Angulakshmi N; Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Korea.
  • Stephan AM; Electrochemical Power Sources Division, CSIR-Central Electrochemical Research Institute, Karaikudi 630 006, India.
  • Lee Y; Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Korea.
  • Ahn JH; Department of Materials Engineering and Convergence Technology, Gyeongsang National University, 501 Jinju-daero, Jinju 52828, Korea.
Molecules ; 26(14)2021 Jul 18.
Article en En | MEDLINE | ID: mdl-34299625
Sodium-ion batteries (SIBs) are promising alternatives to lithium-based energy storage devices for large-scale applications, but conventional lithium-ion battery anode materials do not provide adequate reversible Na-ion storage. In contrast, conversion-based transition metal sulfides have high theoretical capacities and are suitable anode materials for SIBs. Iron sulfide (FeS) is environmentally benign and inexpensive but suffers from low conductivity and sluggish Na-ion diffusion kinetics. In addition, significant volume changes during the sodiation of FeS destroy the electrode structure and shorten the cycle life. Herein, we report the rational design of the FeS/carbon composite, specifically FeS encapsulated within a hierarchically ordered mesoporous carbon prepared via nanocasting using a SBA-15 template with stable cycle life. We evaluated the Na-ion storage properties and found that the parallel 2D mesoporous channels in the resultant FeS/carbon composite enhanced the conductivity, buffered the volume changes, and prevented unwanted side reactions. Further, high-rate Na-ion storage (363.4 mAh g-1 after 500 cycles at 2 A g-1, 132.5 mAh g-1 at 20 A g-1) was achieved, better than that of the bare FeS electrode, indicating the benefit of structural confinement for rapid ion transfer, and demonstrating the excellent electrochemical performance of this anode material at high rates.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Molecules Asunto de la revista: BIOLOGIA Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Molecules Asunto de la revista: BIOLOGIA Año: 2021 Tipo del documento: Article
...