Your browser doesn't support javascript.
loading
Predicting biochar cation exchange capacity using Fourier transform infrared spectroscopy combined with partial least square regression.
Lago, Bruno Cocco; Silva, Carlos Alberto; Melo, Leônidas Carrijo Azevedo; Morais, Everton Geraldo de.
Afiliación
  • Lago BC; Department of Soil Science, School of Agricultural Sciences, Federal University of Lavras, Lavras, Minas Gerais 37200-900, Brazil. Electronic address: bruno.cl@alumni.usp.br.
  • Silva CA; Department of Soil Science, School of Agricultural Sciences, Federal University of Lavras, Lavras, Minas Gerais 37200-900, Brazil.
  • Melo LCA; Department of Soil Science, School of Agricultural Sciences, Federal University of Lavras, Lavras, Minas Gerais 37200-900, Brazil.
  • Morais EG; Department of Soil Science, School of Agricultural Sciences, Federal University of Lavras, Lavras, Minas Gerais 37200-900, Brazil.
Sci Total Environ ; 794: 148762, 2021 Nov 10.
Article en En | MEDLINE | ID: mdl-34323769
ABSTRACT
Determination of cation exchange capacity (CEC) in biochar by applying traditional wet methods is laborious, time-consuming, and generates chemical wastes. In this study, models were developed based on partial least square regression (PLSR) to predict CECs of biochars produced from a wide variety of feedstocks using Fourier transform infrared spectroscopy (FTIR). PLSR models used to predict CEC of biochars on weight (CEC-W) and carbon (CEC-C) basis were obtained from twenty-four biochars derived from several origins of feedstock, as well as compositions and mixtures, including four reference biochar samples. Biochars were grouped according to their CEC-W values (range of 4.0 to 150 cmolc kg-1) or CEC-C values (range of 6.0 to 312 cmolc kg-1). FTIR spectra highlighted features of the main functional groups responsible for biochar's CEC, which allowed a high prediction capacity for the PLSR models (R2pred ~ 0.9). Regression coefficients were associated to spectral variables of the organic matrix polar functional groups that contributed positively and negatively for biochar CEC. Phenolic and carboxylic were the main functional groups contributing to a higher biochar CEC, while CH and CC groups decreased the density of negative charges on the charred matrices. Chemometric models were highly robust to estimate biochar CEC, mainly on a weight basis, in a fast, reliable and economic way, compared to CEC conventional laboratory methods.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Carbón Orgánico Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Sci Total Environ Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Carbón Orgánico Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: Sci Total Environ Año: 2021 Tipo del documento: Article
...