A flat-lying dimer as a key intermediate in NO reduction on Cu(100).
Phys Chem Chem Phys
; 23(31): 16880-16887, 2021 Aug 12.
Article
en En
| MEDLINE
| ID: mdl-34328163
The reaction of nitric oxide (NO) on Cu(100) is studied by scanning tunneling microscopy, electron energy loss spectroscopy and density functional theory calculations. The NO molecules adsorb mainly as monomers at 64 K, and react and dissociate to yield oxygen atoms on the surface at â¼70 K. The temperature required for the dissociation is significantly low for Cu(100), compared to those for Cu(111) and Cu(110). The minimum energy pathway of the reaction is via (NO)2 formation, which converts into a flat-lying ONNO and then dissociates into N2O and O with a considerably low activation energy. We propose that the formation of (NO)2 and flat-lying ONNO is the key to the exceptionally high reactivity of NO on Cu(100).
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Phys Chem Chem Phys
Asunto de la revista:
BIOFISICA
/
QUIMICA
Año:
2021
Tipo del documento:
Article
País de afiliación:
Japón