Your browser doesn't support javascript.
loading
LinkedImm: a linked data graph database for integrating immunological data.
Bukhari, Syed Ahmad Chan; Pawar, Shrikant; Mandell, Jeff; Kleinstein, Steven H; Cheung, Kei-Hoi.
Afiliación
  • Bukhari SAC; Division of Computer Science, Mathematics and Science, Collins College of Professional Studies, St. John's University, New York, NY, USA.
  • Pawar S; Department of Genetics, Yale School of Medicine, New Haven, CT, USA.
  • Mandell J; Program in Computational Biology and Bioinformatics, Yale School of Medicine, New Haven, CT, USA.
  • Kleinstein SH; Program in Computational Biology and Bioinformatics, Yale School of Medicine, New Haven, CT, USA.
  • Cheung KH; Department of Pathology, Yale School of Medicine, New Haven, CT, USA.
BMC Bioinformatics ; 22(Suppl 9): 105, 2021 Aug 25.
Article en En | MEDLINE | ID: mdl-34433410
BACKGROUND: Many systems biology studies leverage the integration of multiple data types (across different data sources) to offer a more comprehensive view of the biological system being studied. While SQL (Structured Query Language) databases are popular in the biomedical domain, NoSQL database technologies have been used as a more relationship-based, flexible and scalable method of data integration. RESULTS: We have created a graph database integrating data from multiple sources. In addition to using a graph-based query language (Cypher) for data retrieval, we have developed a web-based dashboard that allows users to easily browse and plot data without the need to learn Cypher. We have also implemented a visual graph query interface for users to browse graph data. Finally, we have built a prototype to allow the user to query the graph database in natural language. CONCLUSION: We have demonstrated the feasibility and flexibility of using a graph database for storing and querying immunological data with complex biological relationships. Querying a graph database through such relationships has the potential to discover novel relationships among heterogeneous biological data and metadata.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Almacenamiento y Recuperación de la Información / Web Semántica Idioma: En Revista: BMC Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Almacenamiento y Recuperación de la Información / Web Semántica Idioma: En Revista: BMC Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos
...