Sars-CoV-2 Virus Infection May Interfere CD34+ Hematopoietic Stem Cells and Megakaryocyte-Erythroid Progenitors Differentiation Contributing to Platelet Defection towards Insurgence of Thrombocytopenia and Thrombophilia.
Microorganisms
; 9(8)2021 Jul 30.
Article
en En
| MEDLINE
| ID: mdl-34442710
To date, several cases of thrombosis have been confirmed to be related to Sars-CoV-2 infection. Multiple attempts detected the prolonged occurrence of Sars-CoV-2 viral RNA (long COVID) in whole blood suggesting that virus byproducts may remain within cells and tissues well over the disease has finished. Patients may develop severe thrombocytopenia, acute anemia of inflammation and, systemic thrombosis with the fatal course of disease, which is suggestive of further interferences of Sars-CoV-2 on hematopoietic stem cells (HSCs) within the differentiation process towards erythroid and megakaryocytic cells. Therefore, we speculated whether Sars-CoV-2 propagates in or compartmentalizes with hematopoietic progenitor, erythroid, and megakaryocytic cells as the main cause of thrombotic events in either COVID-19 patients or vaccinated individuals. Results: The Sars-CoV-2 RNA replication, protein translation and infectious particle formation as the spike proteins in hematopoietic cell lines take place via the angiotensin-converting enzyme 2 (ACE2) entry pathway within primary CD34+ HSCs inducing, ex vivo, the formation of defected erythroid and megakaryocytic cells that eventually become targets of humoral and adaptive immune cells. Conclusions: Viral particles from affected CD34+ HSCs or the cellular component of RBC units and eventually platelets, present the greatest risk for sever thrombosis-transmitted Sars-CoV-2 infections.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
Microorganisms
Año:
2021
Tipo del documento:
Article
País de afiliación:
Italia