Your browser doesn't support javascript.
loading
Borophene synthesis beyond the single-atomic-layer limit.
Liu, Xiaolong; Li, Qiucheng; Ruan, Qiyuan; Rahn, Matthew S; Yakobson, Boris I; Hersam, Mark C.
Afiliación
  • Liu X; Applied Physics Graduate Program, Northwestern University, Evanston, IL, USA.
  • Li Q; Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
  • Ruan Q; Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA.
  • Rahn MS; Department of Materials Science and Engineering, Northwestern University, Evanston, IL, USA.
  • Yakobson BI; Department of Materials Science and NanoEngineering, Rice University, Houston, TX, USA. biy@rice.edu.
  • Hersam MC; Department of Chemistry, Rice University, Houston, TX, USA. biy@rice.edu.
Nat Mater ; 21(1): 35-40, 2022 01.
Article en En | MEDLINE | ID: mdl-34446862
ABSTRACT
Synthetic two-dimensional (2D) materials have no bulk counterparts and typically exist as single atomic layers due to substrate-stabilized growth. Multilayer formation, although broadly sought for structure and property tuning, has not yet been achieved in the case of synthetic 2D boron that is, borophene1,2. Here, we experimentally demonstrate the synthesis of an atomically well-defined borophene polymorph beyond the single-atomic-layer (SL) limit. The structure of this bilayer (BL) borophene is consistent with two covalently bonded α-phase layers (termed BL-α borophene) as evidenced from bond-resolved scanning tunnelling microscopy, non-contact atomic force microscopy and density functional theory calculations. While the electronic density of states near the Fermi level of BL-α borophene is similar to SL borophene polymorphs, field-emission resonance spectroscopy reveals distinct interfacial charge transfer doping and a heightened local work function exceeding 5 eV. The extension of borophene polymorphs beyond the SL limit significantly expands the phase space for boron-based nanomaterials.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Vibración / Nanoestructuras Idioma: En Revista: Nat Mater Asunto de la revista: CIENCIA / QUIMICA Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Vibración / Nanoestructuras Idioma: En Revista: Nat Mater Asunto de la revista: CIENCIA / QUIMICA Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos
...