Stress increases in exopher-mediated neuronal extrusion require lipid biosynthesis, FGF, and EGF RAS/MAPK signaling.
Proc Natl Acad Sci U S A
; 118(36)2021 09 07.
Article
en En
| MEDLINE
| ID: mdl-34475208
In human neurodegenerative diseases, neurons can transfer toxic protein aggregates to surrounding cells, promoting pathology via poorly understood mechanisms. In Caenorhabditis elegans, proteostressed neurons can expel neurotoxic proteins in large, membrane-bound vesicles called exophers. We investigated how specific stresses impact neuronal trash expulsion to show that neuronal exopher production can be markedly elevated by oxidative and osmotic stress. Unexpectedly, we also found that fasting dramatically increases exophergenesis. Mechanistic dissection focused on identifying nonautonomous factors that sense and activate the fasting-induced exopher response revealed that DAF16/FOXO-dependent and -independent processes are engaged. Fasting-induced exopher elevation requires the intestinal peptide transporter PEPT-1, lipid synthesis transcription factors Mediator complex MDT-15 and SBP-1/SREPB1, and fatty acid synthase FASN-1, implicating remotely initiated lipid signaling in neuronal trash elimination. A conserved fibroblast growth factor (FGF)/RAS/MAPK signaling pathway that acts downstream of, or in parallel to, lipid signaling also promotes fasting-induced neuronal exopher elevation. A germline-based epidermal growth factor (EGF) signal that acts through neurons is also required for exopher production. Our data define a nonautonomous network that links food availability changes to remote, and extreme, neuronal homeostasis responses relevant to aggregate transfer biology.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Estrés Fisiológico
/
Lipogénesis
Tipo de estudio:
Prognostic_studies
Límite:
Animals
Idioma:
En
Revista:
Proc Natl Acad Sci U S A
Año:
2021
Tipo del documento:
Article