Your browser doesn't support javascript.
loading
When graphene meets white graphene - recent advances in the construction of graphene and h-BN heterostructures.
Han, Ziyi; Li, Menghan; Li, Lin; Jiao, Fei; Wei, Zhongming; Geng, Dechao; Hu, Wenping.
Afiliación
  • Han Z; Tianjin Key Laboratory of Molecular Optoelectronic Sciences, Department of Chemistry, School of Science, Tianjin University and Collaborative Innovation Center of Chemical Science and Engineering, Tianjin, 300072 P. R. China. gengdechao_1987@tju.edu.cn.
Nanoscale ; 13(31): 13174-13194, 2021 Aug 21.
Article en En | MEDLINE | ID: mdl-34477725
2D heterostructures have very recently witnessed a boom in scientific and technological activities owing to the customized spatial orientation and tailored physical properties. A large amount of 2D heterostructures have been constructed on the basis of the combination of mechanical exfoliation and located transfer method, opening wide possibilities for designing novel hybrid systems with tuned structures, properties, and applications. Among the as-developed 2D heterostructures, in-plane graphene and h-BN heterostructures have drawn the most attention in the past few decades. The controllable synthesis, the investigation of properties, and the expansion of applications have been widely explored. Herein, the fabrication of graphene and h-BN heterostructures is mainly focused on. Then, the spatial configurations for the heterostructures are systematically probed to identify the highly related unique features. Moreover, as a most promising approach for the scaled production of 2D materials, the in situ CVD fabrication of the heterostructures is summarized, demonstrating a significant potential in the controllability of size, morphology, and quality. Further, the recent applications of the 2D heterostructures are discussed. Finally, the concerns and challenges are fully elucidated and a bright future has been envisioned.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nanoscale Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nanoscale Año: 2021 Tipo del documento: Article
...