Your browser doesn't support javascript.
loading
[Effects of reduced nitrogen application on yield, nitrogen utilization of spring maize and soil nitrate content in Weibei dryland, Northwest China]. / 减量施氮对渭北旱地春玉米产量、氮素利用及土壤硝态氮含量的影响.
Liu, Peng-Zhao; Wang, Xu-Min; Ning, Fang; Luo, Wen-He; Zhang, Qi; Zhang, Yuan-Hong; Li, Jun.
Afiliación
  • Liu PZ; College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
  • Wang XM; Key Laboratory of Crop Physiology and Tillage Science in Northwestern Loess Plateau, Ministry of Agriculture, Yangling 712100, Shaanxi, China.
  • Ning F; College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
  • Luo WH; Key Laboratory of Crop Physiology and Tillage Science in Northwestern Loess Plateau, Ministry of Agriculture, Yangling 712100, Shaanxi, China.
  • Zhang Q; College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
  • Zhang YH; Key Laboratory of Crop Physiology and Tillage Science in Northwestern Loess Plateau, Ministry of Agriculture, Yangling 712100, Shaanxi, China.
  • Li J; College of Agronomy, Northwest A&F University, Yangling 712100, Shaanxi, China.
Ying Yong Sheng Tai Xue Bao ; 31(8): 2621-2629, 2020 Aug.
Article en Zh | MEDLINE | ID: mdl-34494784
To get a scientific pattern for nitrogen-reducing and efficiency-increasing production of spring maize in Weibei dryland, we conducted an in-situ field experiment of spring maize (Zhengdan 958 and Shaandan 8806) under dryland farming from 2016 to 2019 in Heyang County, located in Weibei dryland of Shaanxi. There were five nitrogen (N) treatments, including 360 kg·hm-2(N360, a rate commonly adopted by local farm households), 270 kg·hm-2(N270), 150-180 kg·hm-2(N150-180), 75-90 kg·hm-2(N75-90) and 0 kg·hm-2(N0). We investigated the effects of reduced nitrogen application on maize yield, nitrogen uptake and utilization of spring maize and soil nitrate residue. The results showed that: 1) Maize yield of both varieties at N150-180 was increased by 0.9%-7.1% and nitrogen uptake was decreased by 4.1%-4.6%, while average reco-very efficiency, partial-factor productivity and agronomic efficiency of N at N150-180 were increased by 79.3%-83.6%, 105.9%-157.7%, and 101.9%-114.1% compared with those at N360, respectively. 2) The contents of residual nitrate increased significantly when nitrogen application rate was more than 180 kg·hm-2, while nitrogen uptake was significantly reduced under rainfall shortage, and thus resulted in increasing soil residual nitrogen. After four-year treatments, the residual nitrate was up to 504.7-620.8 kg·hm-2 in 0-200 cm soil layer, with a peak in 80-140 cm soil layer. There was a risk of nitrate leaching. According to the comprehensive evaluation for annual yield, nitrogen use efficiency and soil nitrate residue, the optimum N application rate was recommended to be 150-180 kg N·hm-2 for spring maize in Weibei dryland.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Suelo / Nitrógeno Idioma: Zh Revista: Ying Yong Sheng Tai Xue Bao Asunto de la revista: SAUDE AMBIENTAL Año: 2020 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Suelo / Nitrógeno Idioma: Zh Revista: Ying Yong Sheng Tai Xue Bao Asunto de la revista: SAUDE AMBIENTAL Año: 2020 Tipo del documento: Article País de afiliación: China
...