Your browser doesn't support javascript.
loading
LncRNA GACAT3 promotes esophageal squamous cell carcinoma progression through regulation of miR-149/FOXM1.
Su, Min; Tang, Jinming; Zhang, Baihua; Yang, Desong; Wu, Zhining; Wu, Jie; Zhou, Yong; Liao, Qianjin; Wang, Hui; Wang, Wenxiang; Xiao, Yuhang.
Afiliación
  • Su M; Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal carcinoma, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China.
  • Tang J; Thoracic Surgery Department 2, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China.
  • Zhang B; Hunan Key Laboratory of Cancer Metabolism, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China.
  • Yang D; Hunan Key Laboratory of Translational Radiation Oncology, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China.
  • Wu Z; Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal carcinoma, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China.
  • Wu J; Thoracic Surgery Department 2, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China.
  • Zhou Y; Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal carcinoma, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China.
  • Liao Q; Thoracic Surgery Department 2, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China.
  • Wang H; Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal carcinoma, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China.
  • Wang W; Thoracic Surgery Department 2, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China.
  • Xiao Y; Hunan Clinical Medical Research Center of Accurate Diagnosis and Treatment for Esophageal carcinoma, Hunan Cancer Hospital and The Affiliated Cancer Hospital of Xiangya School of Medicine, Central South University, Changsha, 410013, Hunan, People's Republic of China.
Cancer Cell Int ; 21(1): 478, 2021 Sep 08.
Article en En | MEDLINE | ID: mdl-34496842
BACKGROUND: The long noncoding RNA gastric cancer associated transcript 3 (GACAT3) has been demonstrated to be implicated in the carcinogenesis and progression of many malignancies. However, GACAT3's levels and role in esophageal squamous cell carcinoma (ESCC) has not been elucidated. METHODS: GACAT3 amounts were investigated in ESCC tissues and cell lines by qPCR. Its biological functions were examined by CCK-8 assay, colony formation assay, flow cytometry, wound healing assay, transwell assay, and xenograft model establishment. The relationship between GACAT3 and miR-149 was assessed by dual-luciferase reporter assay. RESULTS: GACAT3 amounts were elevated in ESCC tissue and cell specimens. Functional studies showed that GACAT3 silencing reduced the proliferation, migration and invasion of cultured ESCC cells, and decreased tumor growth in mice. Furthermore, GACAT could directly interact with miR-149. In addition, colony formation and invasion assays verified that GACAT3 promotes ESCC tumor progression through miR-149. Moreover, GACAT3 acted as a competing endogenous RNA (ceRNA) to modulate FOXM1 expression. CONCLUSIONS: These findings indicate that GACAT3 functions as an oncogene by acting as a ceRNA for miR-149 to modulate FOXM1 expression in ESCC, suggesting that GACAT3 might constitute a therapeutic target in ESCC.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Cancer Cell Int Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Cancer Cell Int Año: 2021 Tipo del documento: Article
...