Your browser doesn't support javascript.
loading
MPK3/MPK6-mediated phosphorylation of ERF72 positively regulates resistance to Botrytis cinerea through directly and indirectly activating the transcription of camalexin biosynthesis enzymes.
Li, Yihao; Liu, Kun; Tong, Ganlu; Xi, Chao; Liu, Jin; Zhao, Heping; Wang, Yingdian; Ren, Dongtao; Han, Shengcheng.
Afiliación
  • Li Y; Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
  • Liu K; Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
  • Tong G; State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100094, China.
  • Xi C; Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
  • Liu J; Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
  • Zhao H; Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
  • Wang Y; Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
  • Ren D; State Key Laboratory of Plant Physiology and Biochemistry, College of Biological Sciences, China Agricultural University, Beijing 100094, China.
  • Han S; Beijing Key Laboratory of Gene Resource and Molecular Development, College of Life Sciences, Beijing Normal University, Beijing 100875, China.
J Exp Bot ; 73(1): 413-428, 2022 01 05.
Article en En | MEDLINE | ID: mdl-34499162
ABSTRACT
Ethylene response factor (ERF) Group VII members generally function in regulating plant growth and development, abiotic stress responses, and plant immunity in Arabidopsis; however, the details of the regulatory mechanism by which Group VII ERFs mediate plant immune responses remain elusive. Here, we characterized one such member, ERF72, as a positive regulator that mediates resistance to the necrotrophic pathogen Botrytis cinerea. Compared with the wild-type (WT), the erf72 mutant showed lower camalexin concentration and was more susceptible to B. cinerea, while complementation of ERF72 in erf72 rescued the susceptibility phenotype. Moreover, overexpression of ERF72 in the WT promoted camalexin biosynthesis and increased resistance to B. cinerea. We identified the camalexin-biosynthesis genes PAD3 and CYP71A13 and the transcription factor WRKY33 as target genes of ERF72. We also determined that MPK3 and MPK6 phosphorylated ERF72 at Ser151 and improved its transactivation activity, resulting in increased camalexin concentration and increased resistance to B. cinerea. Thus, ERF72 acts in plant immunity to coordinate camalexin biosynthesis both directly by regulating the expression of biosynthetic genes and indirectly by targeting WRKK33.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas de Arabidopsis Tipo de estudio: Prognostic_studies Idioma: En Revista: J Exp Bot Asunto de la revista: BOTANICA Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Proteínas de Arabidopsis Tipo de estudio: Prognostic_studies Idioma: En Revista: J Exp Bot Asunto de la revista: BOTANICA Año: 2022 Tipo del documento: Article País de afiliación: China
...