Delivery of a Cancer-Testis Antigen-Derived Peptide Using Conformationally Restricted Dipeptide-Based Self-Assembled Nanotubes.
Mol Pharm
; 18(10): 3832-3842, 2021 10 04.
Article
en En
| MEDLINE
| ID: mdl-34499836
Use of tumor-associated antigens for cancer immunotherapy is limited due to their poor in vivo stability and low cellular uptake. Delivery of antigenic peptides using synthetic polymer-based nanostructures has been actively pursued but with limited success. Peptide-based nanostructures hold much promise as delivery vehicles due to their easy design and synthesis and inherent biocompatibility. Here, we report self-assembly of a dipeptide containing a non-natural amino acid, α,ß-dehydrophenylalanine (ΔF), into nanotubes, which efficiently entrapped a MAGE-3-derived peptide (M3). M3 entrapped in F-ΔF nanotubes was more stable to a nonspecific protease treatment and both F-ΔF and F-ΔF-M3 showed no cellular toxicity for four cancerous and noncancerous cell lines used. F-ΔF-M3 showed significantly higher cellular uptake in RAW 267.4 macrophage cells compared to M3 alone and also induced in vitro maturation of dendritic cells (DCs). Immunization of mice with F-ΔF-M3 selected a higher number of IFN-γ secreting CD8+ T cells and CD4+ T compared to M3 alone. On day 21, a tumor growth inhibition ratio (TGI, %) of 41% was observed in a murine melanoma model. These results indicate that F-ΔF nanotubes are highly biocompatible, efficiently delivered M3 to generate cytotoxic T lymphocytes responses, and able to protect M3 from degradation under in vivo conditions. The F-ΔF dipeptide-based nanotubes may be considered as a good platform for further development as delivery agents.
Palabras clave
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Asunto principal:
Testículo
/
Sistema de Administración de Fármacos con Nanopartículas
/
Antígenos de Neoplasias
Límite:
Animals
/
Humans
/
Male
Idioma:
En
Revista:
Mol Pharm
Asunto de la revista:
BIOLOGIA MOLECULAR
/
FARMACIA
/
FARMACOLOGIA
Año:
2021
Tipo del documento:
Article
País de afiliación:
India