Your browser doesn't support javascript.
loading
Planar hydrodynamic traps and buried channels for bead and cell trapping and releasing.
Lipp, Clémentine; Uning, Kevin; Cottet, Jonathan; Migliozzi, Daniel; Bertsch, Arnaud; Renaud, Philippe.
Afiliación
  • Lipp C; Laboratory of Microsystems LMIS4, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. philippe.renaud@epfl.ch.
  • Uning K; Laboratory of Microsystems LMIS4, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. philippe.renaud@epfl.ch.
  • Cottet J; Laboratory of Microsystems LMIS4, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. philippe.renaud@epfl.ch.
  • Migliozzi D; Laboratory of Microsystems LMIS4, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. philippe.renaud@epfl.ch.
  • Bertsch A; Laboratory of Microsystems LMIS4, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. philippe.renaud@epfl.ch.
  • Renaud P; Laboratory of Microsystems LMIS4, Ecole Polytechnique Fédérale de Lausanne (EPFL), Lausanne, Switzerland. philippe.renaud@epfl.ch.
Lab Chip ; 21(19): 3686-3694, 2021 09 28.
Article en En | MEDLINE | ID: mdl-34518854
ABSTRACT
We present a novel concept for the controlled trapping and releasing of beads and cells in a PDMS microfluidic channel without obstacles present around the particle or in the channel. The trapping principle relies on a two-level microfluidic configuration a top main PDMS channel interconnected to a buried glass microchannel using round vias. As the fluidic resistances rule the way the liquid flows inside the channels, particles located in the streamlines passing inside the buried level are immobilized by the round via with a smaller diameter, leaving the object motionless in the upper PDMS channel. The particle is maintained by the difference of pressure established across its interface and acts as an infinite fluidic resistance, virtually cancelling the subsequent buried fluidic path. The pressure is controlled at the outlet of the buried path and three modes of operation of a trap are defined idle, trapping and releasing. The pressure conditions for each mode are defined based on the hydraulic-electrical circuit equivalence. The trapping of polystyrene beads in a compact array of 522 parallel traps controlled by a single pressure was demonstrated with a trapping efficiency of 94%. Pressure conditions necessary to safely trap cells in holes of different diameters were determined and demonstrated in an array of 25 traps, establishing the design and operation rules for the use of planar hydrodynamic traps for biological assays.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Técnicas Analíticas Microfluídicas / Hidrodinámica Idioma: En Revista: Lab Chip Asunto de la revista: BIOTECNOLOGIA / QUIMICA Año: 2021 Tipo del documento: Article País de afiliación: Suiza

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Técnicas Analíticas Microfluídicas / Hidrodinámica Idioma: En Revista: Lab Chip Asunto de la revista: BIOTECNOLOGIA / QUIMICA Año: 2021 Tipo del documento: Article País de afiliación: Suiza
...