Your browser doesn't support javascript.
loading
Mitochondrial enzyme GPT2 regulates metabolic mechanisms required for neuron growth and motor function in vivo.
Baytas, Ozan; Davidson, Shawn M; DeBerardinis, Ralph J; Morrow, Eric M.
Afiliación
  • Baytas O; Department of Molecular Biology, Cell Biology and Biochemistry, Brown University, Providence, RI 02912, USA.
  • Davidson SM; Center for Translational Neuroscience, Carney Institute for Brain Science and Brown Institute for Translational Science, Brown University, Providence, RI 02912, USA.
  • DeBerardinis RJ; Neuroscience Graduate Program, Brown University, Providence, RI 02912, USA.
  • Morrow EM; Lewis-Sigler Institute for Integrative Genomics, Princeton University, Princeton, NJ 08540, USA.
Hum Mol Genet ; 31(4): 587-603, 2022 02 21.
Article en En | MEDLINE | ID: mdl-34519342
The metabolic needs for postnatal growth of the human nervous system are vast. Recessive loss-of-function mutations in the mitochondrial enzyme glutamate pyruvate transaminase 2 (GPT2) in humans cause postnatal undergrowth of brain, and cognitive and motor disability. We demonstrate that GPT2 governs critical metabolic mechanisms in neurons required for neuronal growth and survival. These metabolic processes include neuronal alanine synthesis and anaplerosis, the replenishment of tricarboxylic acid (TCA) cycle intermediates. We performed metabolomics across postnatal development in Gpt2-null mouse brain to identify the trajectory of dysregulated metabolic pathways: alterations in alanine occur earliest; followed by reduced TCA cycle intermediates and reduced pyruvate; followed by elevations in glycolytic intermediates and amino acids. Neuron-specific deletion of GPT2 in mice is sufficient to cause motor abnormalities and death pre-weaning, a phenotype identical to the germline Gpt2-null mouse. Alanine biosynthesis is profoundly impeded in Gpt2-null neurons. Exogenous alanine is necessary for Gpt2-null neuronal survival in vitro but is not needed for Gpt2-null astrocytes. Dietary alanine supplementation in Gpt2-null mice enhances animal survival and improves the metabolic profile of Gpt2-null brain but does not alone appear to correct motor function. In surviving Gpt2-null animals, we observe smaller upper and lower motor neurons in vivo. We also observe selective death of lower motor neurons in vivo with worsening motor behavior with age. In conclusion, these studies of the pathophysiology of GPT2 Deficiency have identified metabolic mechanisms that are required for neuronal growth and that potentially underlie selective neuronal vulnerabilities in motor neurons.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 6_ODS3_enfermedades_notrasmisibles Problema de salud: 6_mental_health_behavioral_disorders Asunto principal: Personas con Discapacidad / Trastornos Motores Límite: Animals / Humans Idioma: En Revista: Hum Mol Genet Asunto de la revista: BIOLOGIA MOLECULAR / GENETICA MEDICA Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 6_ODS3_enfermedades_notrasmisibles Problema de salud: 6_mental_health_behavioral_disorders Asunto principal: Personas con Discapacidad / Trastornos Motores Límite: Animals / Humans Idioma: En Revista: Hum Mol Genet Asunto de la revista: BIOLOGIA MOLECULAR / GENETICA MEDICA Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos
...