Understanding an Exceptionally Fast and Stable Li-Ion Charging of Highly Fluorinated Graphene with Fine-Controlled C-F Configuration.
ACS Appl Mater Interfaces
; 13(45): 53767-53776, 2021 Nov 17.
Article
en En
| MEDLINE
| ID: mdl-34739203
Fluorine (F) atoms with the highest electronegativity and low polarizability can easily modify the surface and composition of carbon-based electrode materials. However, this is accompanied by complete irreversibility and uncontrolled reactivity, thus hindering their use in rechargeable electronic devices. Therefore, understanding the electrochemical effects of the C-F configuration might lead to achieving superior electrochemical properties. Here, we demonstrate that the fluorinated and simultaneously reduced graphene oxide (FrGO) was easily synthesized through direct gas fluorination. The as-prepared 11%-FrGO electrode exhibited a high capacity (1365 mAh g-1 at 0.1 A g-1), remarkable rate capability, and good stability (64% retention after 1000 cycles at 5 A g-1). Furthermore, the annealed FrGO (11%-FrGO(A)) electrode in which the C-F bond configurations were controlled by facile thermal treatment shows long-term stability (80% retention after 1000 cycles at 5 A g-1). Above a certain content, F atoms enhance Li-ion adsorption and electron transfer, accelerate Li-ion diffusion, and facilitate the formation of a solid electrolyte interphase layer. In particular, the C-F configuration plays a significant role in retaining the capacity under harsh recharging conditions. The results in this study could provide valuable insights into the field of rechargeable devices.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
ACS Appl Mater Interfaces
Asunto de la revista:
BIOTECNOLOGIA
/
ENGENHARIA BIOMEDICA
Año:
2021
Tipo del documento:
Article