Your browser doesn't support javascript.
loading
Engineering ligand-specific biosensors for aromatic amino acids and neurochemicals.
Rottinghaus, Austin G; Xi, Chenggang; Amrofell, Matthew B; Yi, Hyojeong; Moon, Tae Seok.
Afiliación
  • Rottinghaus AG; Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
  • Xi C; Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
  • Amrofell MB; Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
  • Yi H; Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA.
  • Moon TS; Department of Energy, Environmental and Chemical Engineering, Washington University in St. Louis, St. Louis, MO, USA; Division of Biology and Biomedical Sciences, Washington University in St. Louis, St. Louis, MO, USA. Electronic address: tsmoon@wustl.edu.
Cell Syst ; 13(3): 204-214.e4, 2022 03 16.
Article en En | MEDLINE | ID: mdl-34767760
ABSTRACT
Microbial biosensors have diverse applications in metabolic engineering and medicine. Specific and accurate quantification of chemical concentrations allows for adaptive regulation of enzymatic pathways and temporally precise expression of diagnostic reporters. Although biosensors should differentiate structurally similar ligands with distinct biological functions, such specific sensors are rarely found in nature and challenging to create. Using E. coli Nissle 1917, a generally regarded as safe microbe, we characterized two biosensor systems that promiscuously recognize aromatic amino acids or neurochemicals. To improve the sensors' selectivity and sensitivity, we applied rational protein engineering by identifying and mutagenizing amino acid residues and successfully demonstrated the ligand-specific biosensors for phenylalanine, tyrosine, phenylethylamine, and tyramine. Additionally, our approach revealed insights into the uncharacterized structure of the FeaR regulator, including critical residues in ligand binding. These results lay the groundwork for developing kinetically adaptive microbes for diverse applications. A record of this paper's transparent peer review process is included in the supplemental information.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 3_ND Problema de salud: 3_neglected_diseases / 3_zoonosis Asunto principal: Técnicas Biosensibles / Aminoácidos Aromáticos Idioma: En Revista: Cell Syst Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Contexto en salud: 3_ND Problema de salud: 3_neglected_diseases / 3_zoonosis Asunto principal: Técnicas Biosensibles / Aminoácidos Aromáticos Idioma: En Revista: Cell Syst Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos
...