Your browser doesn't support javascript.
loading
Open-source deep learning-based automatic segmentation of mouse Schlemm's canal in optical coherence tomography images.
Choy, Kevin C; Li, Guorong; Stamer, W Daniel; Farsiu, Sina.
Afiliación
  • Choy KC; Department of Biomedical Engineering, Duke University, Durham, NC, United States.
  • Li G; Department of Ophthalmology, Duke University, Durham, NC, United States.
  • Stamer WD; Department of Biomedical Engineering, Duke University, Durham, NC, United States; Department of Ophthalmology, Duke University, Durham, NC, United States.
  • Farsiu S; Department of Biomedical Engineering, Duke University, Durham, NC, United States; Department of Ophthalmology, Duke University, Durham, NC, United States. Electronic address: sina.farsiu@duke.edu.
Exp Eye Res ; 214: 108844, 2022 01.
Article en En | MEDLINE | ID: mdl-34793828
The purpose of this study was to develop an automatic deep learning-based approach and corresponding free, open-source software to perform segmentation of the Schlemm's canal (SC) lumen in optical coherence tomography (OCT) scans of living mouse eyes. A novel convolutional neural network (CNN) for semantic segmentation grounded in a U-Net architecture was developed by incorporating a late fusion scheme, multi-scale input image pyramid, dilated residual convolution blocks, and attention-gating. 163 pairs of intensity and speckle variance (SV) OCT B-scans acquired from 32 living mouse eyes were used for training, validation, and testing of this CNN model for segmentation of the SC lumen. The proposed model achieved a mean Dice Similarity Coefficient (DSC) of 0.694 ± 0.256 and median DSC of 0.791, while manual segmentation performed by a second expert grader achieved a mean and median DSC of 0.713 ± 0.209 and 0.763, respectively. This work presents the first automatic method for segmentation of the SC lumen in OCT images of living mouse eyes. The performance of the proposed model is comparable to the performance of a second human grader. Open-source automatic software for segmentation of the SC lumen is expected to accelerate experiments for studying treatment efficacy of new drugs affecting intraocular pressure and related diseases such as glaucoma, which present as changes in the SC area.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Esclerótica / Glaucoma de Ángulo Abierto / Tomografía de Coherencia Óptica / Aprendizaje Profundo / Segmento Anterior del Ojo Tipo de estudio: Guideline Límite: Animals Idioma: En Revista: Exp Eye Res Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Esclerótica / Glaucoma de Ángulo Abierto / Tomografía de Coherencia Óptica / Aprendizaje Profundo / Segmento Anterior del Ojo Tipo de estudio: Guideline Límite: Animals Idioma: En Revista: Exp Eye Res Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos
...