Your browser doesn't support javascript.
loading
Comprehensive Strategies to Bicyclic Prolines: Applications in the Synthesis of Potent Arginase Inhibitors.
Li, Derun; Zhang, Hongjun; Lyons, Thomas W; Lu, Min; Achab, Abdelghani; Pu, Qinglin; Childers, Matthew; Mitcheltree, Matthew J; Wang, Jialiang; Martinot, Theodore A; McMinn, Spencer E; Sloman, David L; Palani, Anandan; Beard, Adam; Nogle, Lisa; Gathiaka, Symon; Saurí, Josep; Kim, Hai-Young; Adpressa, Donovon; Spacciapoli, Peter; Miller, J Richard; Palte, Rachel L; Lesburg, Charles A; Cumming, Jared; Fischer, Christian.
Afiliación
  • Li D; Department of Discovery Chemistry, Department of Discovery Process Chemistry, Department of In Vitro Pharmacology, Department of Computational and Structural Chemistry, and Department of Analytical Research and Development, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115,
  • Zhang H; Department of Discovery Chemistry, Department of Discovery Process Chemistry, Department of In Vitro Pharmacology, Department of Computational and Structural Chemistry, and Department of Analytical Research and Development, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115,
  • Lyons TW; Department of Discovery Chemistry, Department of Discovery Process Chemistry, Department of In Vitro Pharmacology, Department of Computational and Structural Chemistry, and Department of Analytical Research and Development, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115,
  • Lu M; Department of Discovery Chemistry, Department of Discovery Process Chemistry, Department of In Vitro Pharmacology, Department of Computational and Structural Chemistry, and Department of Analytical Research and Development, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115,
  • Achab A; Department of Discovery Chemistry, Department of Discovery Process Chemistry, Department of In Vitro Pharmacology, Department of Computational and Structural Chemistry, and Department of Analytical Research and Development, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115,
  • Pu Q; Department of Discovery Chemistry, Department of Discovery Process Chemistry, Department of In Vitro Pharmacology, Department of Computational and Structural Chemistry, and Department of Analytical Research and Development, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115,
  • Childers M; Department of Discovery Chemistry, Department of Discovery Process Chemistry, Department of In Vitro Pharmacology, Department of Computational and Structural Chemistry, and Department of Analytical Research and Development, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115,
  • Mitcheltree MJ; Department of Discovery Chemistry, Department of Discovery Process Chemistry, Department of In Vitro Pharmacology, Department of Computational and Structural Chemistry, and Department of Analytical Research and Development, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115,
  • Wang J; IDSU, WuXi AppTec Co., Ltd., Shanghai 200131, China.
  • Martinot TA; Department of Discovery Chemistry, Department of Discovery Process Chemistry, Department of In Vitro Pharmacology, Department of Computational and Structural Chemistry, and Department of Analytical Research and Development, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115,
  • McMinn SE; Department of Discovery Chemistry, Department of Discovery Process Chemistry, Department of In Vitro Pharmacology, Department of Computational and Structural Chemistry, and Department of Analytical Research and Development, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115,
  • Sloman DL; Department of Discovery Chemistry, Department of Discovery Process Chemistry, Department of In Vitro Pharmacology, Department of Computational and Structural Chemistry, and Department of Analytical Research and Development, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115,
  • Palani A; Department of Discovery Chemistry, Department of Discovery Process Chemistry, Department of In Vitro Pharmacology, Department of Computational and Structural Chemistry, and Department of Analytical Research and Development, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115,
  • Beard A; Department of Discovery Chemistry, Department of Discovery Process Chemistry, Department of In Vitro Pharmacology, Department of Computational and Structural Chemistry, and Department of Analytical Research and Development, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115,
  • Nogle L; Department of Discovery Chemistry, Department of Discovery Process Chemistry, Department of In Vitro Pharmacology, Department of Computational and Structural Chemistry, and Department of Analytical Research and Development, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115,
  • Gathiaka S; Department of Discovery Chemistry, Department of Discovery Process Chemistry, Department of In Vitro Pharmacology, Department of Computational and Structural Chemistry, and Department of Analytical Research and Development, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115,
  • Saurí J; Department of Discovery Chemistry, Department of Discovery Process Chemistry, Department of In Vitro Pharmacology, Department of Computational and Structural Chemistry, and Department of Analytical Research and Development, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115,
  • Kim HY; Department of Discovery Chemistry, Department of Discovery Process Chemistry, Department of In Vitro Pharmacology, Department of Computational and Structural Chemistry, and Department of Analytical Research and Development, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115,
  • Adpressa D; Department of Discovery Chemistry, Department of Discovery Process Chemistry, Department of In Vitro Pharmacology, Department of Computational and Structural Chemistry, and Department of Analytical Research and Development, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115,
  • Spacciapoli P; Department of Discovery Chemistry, Department of Discovery Process Chemistry, Department of In Vitro Pharmacology, Department of Computational and Structural Chemistry, and Department of Analytical Research and Development, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115,
  • Miller JR; Department of Discovery Chemistry, Department of Discovery Process Chemistry, Department of In Vitro Pharmacology, Department of Computational and Structural Chemistry, and Department of Analytical Research and Development, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115,
  • Palte RL; Department of Discovery Chemistry, Department of Discovery Process Chemistry, Department of In Vitro Pharmacology, Department of Computational and Structural Chemistry, and Department of Analytical Research and Development, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115,
  • Lesburg CA; Department of Discovery Chemistry, Department of Discovery Process Chemistry, Department of In Vitro Pharmacology, Department of Computational and Structural Chemistry, and Department of Analytical Research and Development, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115,
  • Cumming J; Department of Discovery Chemistry, Department of Discovery Process Chemistry, Department of In Vitro Pharmacology, Department of Computational and Structural Chemistry, and Department of Analytical Research and Development, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115,
  • Fischer C; Department of Discovery Chemistry, Department of Discovery Process Chemistry, Department of In Vitro Pharmacology, Department of Computational and Structural Chemistry, and Department of Analytical Research and Development, Merck & Co., Inc., 33 Avenue Louis Pasteur, Boston, Massachusetts 02115,
ACS Med Chem Lett ; 12(11): 1678-1688, 2021 Nov 11.
Article en En | MEDLINE | ID: mdl-34795856
Comprehensive synthetic strategies afforded a diverse set of structurally unique bicyclic proline-containing arginase inhibitors with a high degree of three-dimensionality. The analogs that favored the Cγ-exo conformation of the proline improved the arginase potency over the initial lead. The novel synthetic strategies reported here not only enable access to previously unknown stereochemically complex proline derivatives but also provide a foundation for the future synthesis of bicyclic proline analogs, which incorporate inherent three-dimensional character into building blocks, medicine, and catalysts and could have a profound impact on the conformation of proline-containing peptides and macrocycles.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Med Chem Lett Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Med Chem Lett Año: 2021 Tipo del documento: Article
...