Defect Engineering: Electron-Exchange Integral Manipulation to Generate a Large Magnetocaloric Effect in Ni41Mn43Co6Sn10 Alloys.
ACS Appl Mater Interfaces
; 13(48): 57372-57379, 2021 Dec 08.
Article
en En
| MEDLINE
| ID: mdl-34807560
A promising magnetocaloric effect has been obtained in Ni-(Co)-Mn-X (X = Sn, In, Sb)-based Heusler alloys, but the low isothermal magnetic entropy change ΔSM restricts the further promotion of such materials. Defect engineering is a useful method to modulate magnetic performance and shows great potential in improving the magnetocaloric effect. In this work, dense Ni vacancies are introduced in Ni41Mn43Co6Sn10 alloys by employing high-energy electron irradiation to adjust the magnetic properties. These vacancies bring about intense lattice distortion to change the distance between adjacent magnetic atoms, leading to a significant enhancement of the average magnetic moment. As a result, the saturation magnetization of ferromagnetic austenite is accordingly improved to generate a high isothermal magnetic entropy change ΔSM of 20.0 J/(kg K) at a very low magnetic field of â¼2 T.
Texto completo:
1
Colección:
01-internacional
Base de datos:
MEDLINE
Idioma:
En
Revista:
ACS Appl Mater Interfaces
Asunto de la revista:
BIOTECNOLOGIA
/
ENGENHARIA BIOMEDICA
Año:
2021
Tipo del documento:
Article
País de afiliación:
China