Your browser doesn't support javascript.
loading
Thomson and collisional regimes of in-phase coherent microwave scattering off gaseous microplasmas.
Patel, Adam R; Ranjan, Apoorv; Wang, Xingxing; Slipchenko, Mikhail N; Shneider, Mikhail N; Shashurin, Alexey.
Afiliación
  • Patel AR; School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN, USA.
  • Ranjan A; School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN, USA.
  • Wang X; School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN, USA.
  • Slipchenko MN; School of Mechanical Engineering, Purdue University, West Lafayette, IN, USA.
  • Shneider MN; Mechanical and Aerospace Engineering, Princeton University, Princeton, NJ, USA.
  • Shashurin A; School of Aeronautics and Astronautics, Purdue University, West Lafayette, IN, USA. ashashur@purdue.edu.
Sci Rep ; 11(1): 23389, 2021 Dec 03.
Article en En | MEDLINE | ID: mdl-34862396
ABSTRACT
The total number of electrons in a classical microplasma can be non-intrusively measured through elastic in-phase coherent microwave scattering (CMS). Here, we establish a theoretical basis for the CMS diagnostic technique with an emphasis on Thomson and collisional scattering in short, thin unmagnetized plasma media. Experimental validation of the diagnostic is subsequently performed via linearly polarized, variable frequency (10.5-12 GHz) microwave scattering off laser induced 1-760 Torr air-based microplasmas (287.5 nm O2 resonant photoionization by ~ 5 ns, < 3 mJ pulses) with diverse ionization and collisional features. Namely, conducted studies include a verification of short-dipole-like radiation behavior, plasma volume imaging via ICCD photography, and measurements of relative phases, total scattering cross-sections, and total number of electrons [Formula see text] in the generated plasma filaments following absolute calibration using a dielectric scattering sample. Findings of the paper suggest an ideality of CMS in the Thomson "free-electron" regime-where a detailed knowledge of plasma and collisional properties (which are often difficult to accurately characterize due to the potential influence of inhomogeneities, local temperatures and densities, present species, and so on) is unnecessary to extract [Formula see text] from the scattered signal. The Thomson scattering regime of microwaves is further experimentally verified via measurements of the relative phase between the incident electric field and electron displacement.

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Rep Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Sci Rep Año: 2021 Tipo del documento: Article País de afiliación: Estados Unidos
...