Your browser doesn't support javascript.
loading
XGBoost-based intelligence yield prediction and reaction factors analysis of amination reaction.
Dong, Jing; Peng, Lichao; Yang, Xiaohui; Zhang, Zelin; Zhang, Puyu.
Afiliación
  • Dong J; Henan Engineering Research Center for Artificial Intelligence Theory and Algorithms, School of Mathematics and Statistics, Henan University, Kaifeng, China.
  • Peng L; National & Local Joint Engineering Research Center for Applied Technology of Hybrid Nanomaterials, Henan University, Kaifeng, China.
  • Yang X; Henan Engineering Research Center for Artificial Intelligence Theory and Algorithms, School of Mathematics and Statistics, Henan University, Kaifeng, China.
  • Zhang Z; School of Computer and Information Engineering, Henan University, Kaifeng, China.
  • Zhang P; College of Chemistry and Chemical Engineering, Henan University, Kaifeng, China.
J Comput Chem ; 43(4): 289-302, 2022 02 05.
Article en En | MEDLINE | ID: mdl-34862652
Buchwald-Hartwig amination reaction catalyzed by palladium plays an important role in drug synthesis. In the last few years, machine learning-assisted strategies emerged and quickly gained attention. In this article, an importance and relevance-based integrated feature screening method is proposed to effectively filter high-dimensional feature descriptor data. Then, a regularized machine learning boosting tree model, eXtreme Gradient Boosting, is introduced to intelligently predict reaction performance in multidimensional chemistry space. Furthermore, convergence, interpretability, generalization, and the internal association between reaction conditions and yields are excavated, which provides intelligent assistance for the optimal design of coupling reaction system and evaluating the reaction conditions. Compared with recently published results, the proposed method requires fewer feature descriptors, takes less time, and achieves more accurate prediction accuracy.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Aminas Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Comput Chem Asunto de la revista: QUIMICA Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Aminas Tipo de estudio: Prognostic_studies / Risk_factors_studies Idioma: En Revista: J Comput Chem Asunto de la revista: QUIMICA Año: 2022 Tipo del documento: Article País de afiliación: China
...