Your browser doesn't support javascript.
loading
Impacts of COVID-19 local spread and Google search trend on the US stock market.
Dey, Asim K; Hoque, G M Toufiqul; Das, Kumer P; Panovska, Irina.
Afiliación
  • Dey AK; Department of Mathematical Sciences, University of Texas at El Paso, El Paso, TX 79968, USA.
  • Hoque GMT; Department of Electrical and & Computer Engineering, Princeton University, Princeton, NJ 08544, USA.
  • Das KP; Department of Mathematics, Lamar University, Beaumont, TX 77705, USA.
  • Panovska I; The Office of Vice President for Research, Innovation, and Economic Development, University of Louisiana at Lafayette, Lafayette, LA 70504, USA.
Physica A ; 589: 126423, 2022 Mar 01.
Article en En | MEDLINE | ID: mdl-34866767
We develop a novel temporal complex network approach to quantify the US county level spread dynamics of COVID-19. We use both conventional econometric and Machine Learning (ML) models that incorporate the local spread dynamics, COVID-19 cases and death, and Google search activities to assess if incorporating information about local spreads improves the predictive accuracy of models for the US stock market. The results suggest that COVID-19 cases and deaths, its local spread, and Google searches have impacts on abnormal stock prices between January 2020 to May 2020. Furthermore, incorporating information about local spread significantly improves the performance of forecasting models of the abnormal stock prices at longer forecasting horizons.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Physica A Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Prognostic_studies Idioma: En Revista: Physica A Año: 2022 Tipo del documento: Article País de afiliación: Estados Unidos
...