Your browser doesn't support javascript.
loading
2-Deoxy-D-glucose couples mitochondrial DNA replication with mitochondrial fitness and promotes the selection of wild-type over mutant mitochondrial DNA.
Pantic, Boris; Ives, Daniel; Mennuni, Mara; Perez-Rodriguez, Diego; Fernandez-Pelayo, Uxoa; Lopez de Arbina, Amaia; Muñoz-Oreja, Mikel; Villar-Fernandez, Marina; Dang, Thanh-Mai Julie; Vergani, Lodovica; Johnston, Iain G; Pitceathly, Robert D S; McFarland, Robert; Hanna, Michael G; Taylor, Robert W; Holt, Ian J; Spinazzola, Antonella.
Afiliación
  • Pantic B; Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London, NW3 2PF, UK.
  • Ives D; Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London, NW3 2PF, UK.
  • Mennuni M; Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London, NW3 2PF, UK.
  • Perez-Rodriguez D; Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London, NW3 2PF, UK.
  • Fernandez-Pelayo U; Biodonostia Health Research Institute, 20014, San Sebastián, Spain.
  • Lopez de Arbina A; Biodonostia Health Research Institute, 20014, San Sebastián, Spain.
  • Muñoz-Oreja M; Biodonostia Health Research Institute, 20014, San Sebastián, Spain.
  • Villar-Fernandez M; Department of Pediatrics, Medicine and Nursing Faculty, Universidad de País Vasco, Bilbao, Spain.
  • Dang TJ; Biodonostia Health Research Institute, 20014, San Sebastián, Spain.
  • Vergani L; Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London, NW3 2PF, UK.
  • Johnston IG; Department of Neurosciences, University of Padova, 35128, Padova, Italy.
  • Pitceathly RDS; Faculty of Mathematics and Natural Sciences, University of Bergen, 5007, Bergen, Norway.
  • McFarland R; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, WC1N 3BG, UK.
  • Hanna MG; Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
  • Taylor RW; Department of Neuromuscular Diseases, UCL Queen Square Institute of Neurology and The National Hospital for Neurology and Neurosurgery, London, WC1N 3BG, UK.
  • Holt IJ; Wellcome Centre for Mitochondrial Research, Translational and Clinical Research Institute, Faculty of Medical Sciences Newcastle University, Newcastle upon Tyne, NE2 4HH, UK.
  • Spinazzola A; Department of Clinical and Movement Neurosciences, UCL Queen Square Institute of Neurology, Royal Free Campus, London, NW3 2PF, UK. ian.holt@biodonostia.org.
Nat Commun ; 12(1): 6997, 2021 12 06.
Article en En | MEDLINE | ID: mdl-34873176
Pathological variants of human mitochondrial DNA (mtDNA) typically co-exist with wild-type molecules, but the factors driving the selection of each are not understood. Because mitochondrial fitness does not favour the propagation of functional mtDNAs in disease states, we sought to create conditions where it would be advantageous. Glucose and glutamine consumption are increased in mtDNA dysfunction, and so we targeted the use of both in cells carrying the pathogenic m.3243A>G variant with 2-Deoxy-D-glucose (2DG), or the related 5-thioglucose. Here, we show that both compounds selected wild-type over mutant mtDNA, restoring mtDNA expression and respiration. Mechanistically, 2DG selectively inhibits the replication of mutant mtDNA; and glutamine is the key target metabolite, as its withdrawal, too, suppresses mtDNA synthesis in mutant cells. Additionally, by restricting glucose utilization, 2DG supports functional mtDNAs, as glucose-fuelled respiration is critical for mtDNA replication in control cells, when glucose and glutamine are scarce. Hence, we demonstrate that mitochondrial fitness dictates metabolite preference for mtDNA replication; consequently, interventions that restrict metabolite availability can suppress pathological mtDNAs, by coupling mitochondrial fitness and replication.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: ADN Mitocondrial / Mutación Puntual / Desoxiglucosa / Replicación del ADN / Mitocondrias Límite: Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2021 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: ADN Mitocondrial / Mutación Puntual / Desoxiglucosa / Replicación del ADN / Mitocondrias Límite: Humans Idioma: En Revista: Nat Commun Asunto de la revista: BIOLOGIA / CIENCIA Año: 2021 Tipo del documento: Article
...