Your browser doesn't support javascript.
loading
NIR-to-NIR Imaging: Extended Excitation Up to 2.2 µm Using Harmonic Nanoparticles with a Tunable hIGh EneRgy (TIGER) Widefield Microscope.
Vittadello, Laura; Klenen, Jan; Koempe, Karsten; Kocsor, Laura; Szaller, Zsuzsanna; Imlau, Mirco.
Afiliación
  • Vittadello L; Department of Physics, Osnabrueck University, 49076 Osnabrueck, Germany.
  • Klenen J; Research Center for Cellular Nanoanalytics, Osnabrueck (CellNanOs), Osnabrueck University, 49076 Osnabrueck, Germany.
  • Koempe K; Department of Physics, Osnabrueck University, 49076 Osnabrueck, Germany.
  • Kocsor L; Research Center for Cellular Nanoanalytics, Osnabrueck (CellNanOs), Osnabrueck University, 49076 Osnabrueck, Germany.
  • Szaller Z; Research Center for Cellular Nanoanalytics, Osnabrueck (CellNanOs), Osnabrueck University, 49076 Osnabrueck, Germany.
  • Imlau M; Department of Biology/Chemistry, Osnabrueck University, 49076 Osnabrueck, Germany.
Nanomaterials (Basel) ; 11(12)2021 Nov 25.
Article en En | MEDLINE | ID: mdl-34947542
Near-infrared (NIR) marker-based imaging is of growing importance for deep tissue imaging and is based on a considerable reduction of optical losses at large wavelengths. We aim to extend the range of NIR excitation wavelengths particularly to values beyond 1.6 µm in order to profit from the low loss biological windows NIR-III and NIR-IV. We address this task by studying NIR-excitation to NIR-emission conversion and imaging in the range of 1200 up to 2400 nm at the example of harmonic Mg-doped lithium niobate nanoparticles (i) using a nonlinear diffuse femtosecond-pulse reflectometer and (ii) a Tunable hIGh EneRgy (TIGER) widefield microscope. We successfully demonstrate the existence of appropriate excitation/emission configurations in this spectral region taking harmonic generation into account. Moreover, NIR-imaging using the most striking configurations NIR-III to NIR-I, based on second harmonic generation (SHG), and NIR-IV to NIR-I, based on third harmonic generation (THG), is demonstrated with excitation wavelengths from 1.6-1.8 µm and from 2.1-2.2 µm, respectively. The advantages of the approach and the potential to additionally extend the emission range up to 2400 nm, making use of sum frequency generation (SFG) and difference frequency generation (DFG), are discussed.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nanomaterials (Basel) Año: 2021 Tipo del documento: Article País de afiliación: Alemania

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: Nanomaterials (Basel) Año: 2021 Tipo del documento: Article País de afiliación: Alemania
...