Your browser doesn't support javascript.
loading
Dual-Stimulus Control for Ultra-Wideband and Multidimensional Modulation in Terahertz Metasurfaces Comprising Graphene and Metal Halide Perovskites.
Yang, Maosheng; Li, Tengteng; Yan, Xin; Liang, Lanju; Yao, Haiyun; Sun, Zhaoqing; Li, Jing; Li, Jie; Wei, Dequan; Wang, Meng; Ye, Yunxia; Song, Xiaoxian; Zhang, Haiting; Yao, Jianquan.
Afiliación
  • Yang M; Institute of Micro-Nano Optoelectronics and Terahertz Technology, and School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China.
  • Li T; College of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China.
  • Yan X; School of Opto-Electronic Engineering, Zao Zhuang University, Zao Zhuang 277160, China.
  • Liang L; School of Opto-Electronic Engineering, Zao Zhuang University, Zao Zhuang 277160, China.
  • Yao H; School of Opto-Electronic Engineering, Zao Zhuang University, Zao Zhuang 277160, China.
  • Sun Z; College of Materials Science and Engineering, Key Laboratory of Advanced Functional Materials, Education Ministry of China, Beijing University of Technology, Beijing 100124, China.
  • Li J; Institute of Micro-Nano Optoelectronics and Terahertz Technology, and School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China.
  • Li J; College of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China.
  • Wei D; School of Opto-Electronic Engineering, Zao Zhuang University, Zao Zhuang 277160, China.
  • Wang M; School of Opto-Electronic Engineering, Zao Zhuang University, Zao Zhuang 277160, China.
  • Ye Y; Institute of Micro-Nano Optoelectronics and Terahertz Technology, and School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China.
  • Song X; Institute of Micro-Nano Optoelectronics and Terahertz Technology, and School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China.
  • Zhang H; Institute of Micro-Nano Optoelectronics and Terahertz Technology, and School of Mechanical Engineering, Jiangsu University, Zhenjiang 212013, China.
  • Yao J; College of Precision Instruments and Opto-Electronics Engineering, Tianjin University, Tianjin 300072, China.
ACS Appl Mater Interfaces ; 14(1): 2155-2165, 2022 Jan 12.
Article en En | MEDLINE | ID: mdl-34958542
Perovskites and graphene are receiving a meteoric rise in popularity in the field of active photonics because they exhibit excellent optoelectronic properties for dynamic manipulation of light-matter interactions. However, challenges still exist, such as the instability of perovskites under ambient conditions and the low Fermi level of graphene in experiments. These shortcomings limit the scope of applications when they are used alone in advanced optical devices. However, the combination of graphene and perovskites is still a promising route for efficient control of light-matter interactions. Here, we report a dual-optoelectronic metadevice fabricated by integrating terahertz metasurfaces with a sandwich complex composed of graphene, polyimide, and perovskites for ultra-wideband and multidimensional manipulation of higher-order Fano resonances. Owing to the photogenerated carriers and electrostatic doping effect, the dual optoelectronic metadevice showed different manipulation behavior at thermal imbalance (electrostatic doping state of the system). The modulation depth of the transmission amplitude reached 200%, the total resonant frequency shift was 800 GHz, and the tunable range of the resonant frequency was 68.8%. In addition, modulation of the maximum phase reached 346°. This work will inspire a new generation of metasurface-based optical devices that combine two active materials.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Idioma: En Revista: ACS Appl Mater Interfaces Asunto de la revista: BIOTECNOLOGIA / ENGENHARIA BIOMEDICA Año: 2022 Tipo del documento: Article País de afiliación: China
...