Your browser doesn't support javascript.
loading
Impact of Magnetic Stimulation on Periodontal Ligament Stem Cells.
Peluso, Valentina; Rinaldi, Laura; Russo, Teresa; Oliviero, Olimpia; Di Vito, Anna; Garbi, Corrado; Giudice, Amerigo; De Santis, Roberto; Gloria, Antonio; D'Antò, Vincenzo.
Afiliación
  • Peluso V; Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy.
  • Rinaldi L; Department of Molecular Medicine and Medical Biotechnologies, University of Naples Federico II, 80131 Naples, Italy.
  • Russo T; Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V.le J.F. Kennedy 54. Mostra d'Oltremare Pad. 20, 80125 Naples, Italy.
  • Oliviero O; Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy.
  • Di Vito A; Department of Experimental and Clinical Medicine, University Magna Graecia of Catanzaro, 88100 Catanzaro, Italy.
  • Garbi C; Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy.
  • Giudice A; Department of Health Sciences, School of Dentistry, Magna Graecia University of Catanzaro, 88100 Catanzaro, Italy.
  • De Santis R; Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V.le J.F. Kennedy 54. Mostra d'Oltremare Pad. 20, 80125 Naples, Italy.
  • Gloria A; Institute of Polymers, Composites and Biomaterials, National Research Council of Italy, V.le J.F. Kennedy 54. Mostra d'Oltremare Pad. 20, 80125 Naples, Italy.
  • D'Antò V; Department of Neurosciences, Reproductive and Odontostomatological Sciences, University of Naples Federico II, 80131 Naples, Italy.
Int J Mol Sci ; 23(1)2021 Dec 24.
Article en En | MEDLINE | ID: mdl-35008612
ABSTRACT
The aim of this study was to evaluate the effect of a time-dependent magnetic field on the biological performance of periodontal ligament stem cells (PDLSCs). A Western blot analysis and Alamar Blue assay were performed to investigate the proliferative capacity of magnetically stimulated PDLSCs (PDLSCs MAG) through the study of the MAPK cascade (p-ERK1/2). The observation of ALP levels allowed the evaluation of the effect of the magnetic field on osteogenic differentiation. Metabolomics data, such as oxygen consumption rate (OCR), extracellular acidification rate (ECAR) and ATP production provided an overview of the PDLSCs MAG metabolic state. Moreover, the mitochondrial state was investigated through confocal laser scanning microscopy. Results showed a good viability for PDLSCs MAG. Magnetic stimulation can activate the ERK phosphorylation more than the FGF factor alone by promoting a better cell proliferation. Osteogenic differentiation was more effectively induced by magnetic stimulation. The metabolic panel indicated significant changes in the mitochondrial cellular respiration of PDLSCs MAG. The results suggested that periodontal ligament stem cells (PDLSCs) can respond to biophysical stimuli such as a time-dependent magnetic field, which is able to induce changes in cell proliferation and differentiation. Moreover, the magnetic stimulation also produced an effect on the cell metabolic profile. Therefore, the current study demonstrated that a time-dependent magnetic stimulation may improve the regenerative properties of PDLSCs.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ligamento Periodontal / Células Madre / Campos Magnéticos Límite: Adult / Humans Idioma: En Revista: Int J Mol Sci Año: 2021 Tipo del documento: Article País de afiliación: Italia

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Ligamento Periodontal / Células Madre / Campos Magnéticos Límite: Adult / Humans Idioma: En Revista: Int J Mol Sci Año: 2021 Tipo del documento: Article País de afiliación: Italia
...