Your browser doesn't support javascript.
loading
Integrating Domain Knowledge into Deep Learning for Skin Lesion Risk Prioritization to Assist Teledermatology Referral.
Carvalho, Rafaela; Morgado, Ana C; Andrade, Catarina; Nedelcu, Tudor; Carreiro, André; Vasconcelos, Maria João M.
Afiliación
  • Carvalho R; Fraunhofer Portugal AICOS, Rua Alfredo Allen, 4200-135 Porto, Portugal.
  • Morgado AC; Fraunhofer Portugal AICOS, Rua Alfredo Allen, 4200-135 Porto, Portugal.
  • Andrade C; Fraunhofer Portugal AICOS, Rua Alfredo Allen, 4200-135 Porto, Portugal.
  • Nedelcu T; Fraunhofer Portugal AICOS, Rua Alfredo Allen, 4200-135 Porto, Portugal.
  • Carreiro A; Fraunhofer Portugal AICOS, Rua Alfredo Allen, 4200-135 Porto, Portugal.
  • Vasconcelos MJM; Fraunhofer Portugal AICOS, Rua Alfredo Allen, 4200-135 Porto, Portugal.
Diagnostics (Basel) ; 12(1)2021 Dec 24.
Article en En | MEDLINE | ID: mdl-35054203
Teledermatology has developed rapidly in recent years and is nowadays an essential tool for early diagnosis. In this work, we aim to improve existing Teledermatology processes for skin lesion diagnosis by developing a deep learning approach for risk prioritization with a dataset of retrospective data from referral requests of the Portuguese National Health System. Given the high complexity of this task, we propose a new prioritization pipeline guided and inspired by domain knowledge. We explored automatic lesion segmentation and tested different learning schemes, namely hierarchical classification and curriculum learning approaches, optionally including additional patient metadata. The final priority level prediction can then be obtained by combining predicted diagnosis and a baseline priority level accounting for explicit expert knowledge. In both the differential diagnosis and prioritization branches, lesion segmentation with 30% tolerance for contextual information was shown to improve classification when compared with a flat baseline model trained on original images; furthermore, the addition of patient information was not beneficial for most experiments. Curriculum learning delivered better results than a flat or hierarchical approach. The combination of diagnosis information and a knowledge map, created in collaboration with dermatologists, together with the priority achieved interesting results (best macro F1 of 43.93% for a validated test set), paving the way for new data-centric and knowledge-driven approaches.
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Etiology_studies / Prognostic_studies / Risk_factors_studies / Screening_studies Idioma: En Revista: Diagnostics (Basel) Año: 2021 Tipo del documento: Article País de afiliación: Portugal

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Tipo de estudio: Etiology_studies / Prognostic_studies / Risk_factors_studies / Screening_studies Idioma: En Revista: Diagnostics (Basel) Año: 2021 Tipo del documento: Article País de afiliación: Portugal
...