Your browser doesn't support javascript.
loading
Different cell imaging methods did not significantly improve immune cell image classification performance.
Ogawa, Taisaku; Ochiai, Koji; Iwata, Tomoharu; Ikawa, Tomokatsu; Tsuzuki, Taku; Shiroguchi, Katsuyuki; Takahashi, Koichi.
Afiliación
  • Ogawa T; Laboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, Japan.
  • Ochiai K; Laboratory for Biologically Inspired Computing, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, Japan.
  • Iwata T; Ueda Research Laboratory, NTT Communication Science Laboratories, Kyoto, Japan.
  • Ikawa T; Division of Immunology and Allergy, Research Institute for Biomedical Sciences, Tokyo University of Science, Noda, Chiba, Japan.
  • Tsuzuki T; Laboratory for Computational Molecular Design, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, Japan.
  • Shiroguchi K; Epistra Inc., Tokyo, Japan.
  • Takahashi K; Laboratory for Prediction of Cell Systems Dynamics, RIKEN Center for Biosystems Dynamics Research (BDR), Suita, Osaka, Japan.
PLoS One ; 17(1): e0262397, 2022.
Article en En | MEDLINE | ID: mdl-35085287
Developments in high-throughput microscopy have made it possible to collect huge amounts of cell image data that are difficult to analyse manually. Machine learning (e.g., deep learning) is often employed to automate the extraction of information from these data, such as cell counting, cell type classification and image segmentation. However, the effects of different imaging methods on the accuracy of image processing have not been examined systematically. We studied the effects of different imaging methods on the performance of machine learning-based cell type classifiers. We observed lymphoid-primed multipotential progenitor (LMPP) and pro-B cells using three imaging methods: differential interference contrast (DIC), phase contrast (Ph) and bright-field (BF). We examined the classification performance of convolutional neural networks (CNNs) with each of them and their combinations. CNNs achieved an area under the receiver operating characteristic (ROC) curve (AUC) of ~0.9, which was significantly better than when the classifier used only cell size or cell contour shape as input. However, no significant differences were found between imaging methods and focal positions.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2022 Tipo del documento: Article País de afiliación: Japón

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Procesamiento de Imagen Asistido por Computador Tipo de estudio: Prognostic_studies Límite: Humans Idioma: En Revista: PLoS One Asunto de la revista: CIENCIA / MEDICINA Año: 2022 Tipo del documento: Article País de afiliación: Japón
...