Your browser doesn't support javascript.
loading
Genetic analyses of blood ß-hydroxybutyrate predicted from milk infrared spectra and its association with longevity and female reproductive traits in Holstein cattle.
Lou, W; Zhang, H; Luo, H; Chen, Z; Shi, R; Guo, X; Zou, Y; Liu, L; Brito, L F; Guo, G; Wang, Y.
Afiliación
  • Lou W; National Engineering Laboratory of Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs (MARA); College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
  • Zhang H; National Engineering Laboratory of Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs (MARA); College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
  • Luo H; National Engineering Laboratory of Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs (MARA); College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
  • Chen Z; National Engineering Laboratory of Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs (MARA); College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China.
  • Shi R; National Engineering Laboratory of Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs (MARA); College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China; Animal Breeding and Genomics Group, Wag
  • Guo X; Center of Quantitative Genetics and Genomics, Aarhus University, Tjele, 8830, Denmark.
  • Zou Y; Beijing Dairy Cattle Center, Beijing, 100192, China.
  • Liu L; Beijing Dairy Cattle Center, Beijing, 100192, China.
  • Brito LF; Department of Animal Science, Purdue University, West Lafayette, IN 47907.
  • Guo G; Beijing Sunlon Livestock Development Company Limited, Beijing, 10029, China.
  • Wang Y; National Engineering Laboratory of Animal Breeding; Key Laboratory of Animal Genetics, Breeding and Reproduction, Ministry of Agriculture and Rural Affairs (MARA); College of Animal Science and Technology, China Agricultural University, Beijing, 100193, China. Electronic address: wangyachun@cau.edu.
J Dairy Sci ; 105(4): 3269-3281, 2022 Apr.
Article en En | MEDLINE | ID: mdl-35094854
Ketosis is one of the most prevalent and complex metabolic disorders in high-producing dairy cows and usually detected through analyses of ß-hydroxybutyrate (BHB) concentration in blood. Our main objectives were to evaluate genetic parameters for blood BHB predicted based on Fourier-transform mid-infrared spectra from 5 to 305 d in milk, and estimate the genetic relationships of blood BHB with 7 reproduction traits and 6 longevity traits in Holstein cattle. Predicted blood BHB records of 11,609 Holstein cows (after quality control) were collected from 2016 to 2019 and used to derive 4 traits based on parity number, including predicted blood BHB in all parities (BHBp), parity 1 (BHB1), parity 2 (BHB2), and parity 3+ (BHB3). Single- and multitrait repeatability models were used for estimating genetic parameters for the 4 BHB traits. Random regression test-day models implemented via Bayesian inference were used to evaluate the daily genetic feature of BHB variability. In addition, genetic correlations were calculated for the 4 BHB traits with reproduction and longevity traits. The heritability estimates of BHBp, BHB1, BHB2, and BHB3 ranged from 0.100 ± 0.026 (± standard error) to 0.131 ± 0.023. The BHB in parities 1 to 3+ were highly genetically correlated and ranged from 0.788 (BHB1 and BHB2) to 0.911 (BHB1 and BHB3). The daily heritability of BHBp ranged from 0.069 to 0.195, higher for the early and lower for the later lactation periods. A similar trend was observed for BHB1, BHB2, and BHB3. There are low direct genetic correlations between BHBp and selected reproductive performance and longevity traits, which ranged from -0.168 ± 0.019 (BHBp and production life) to 0.157 ± 0.019 (BHBp and age at first calving) for the early lactation stage (5 to 65 d). These direct genetic correlations indicate that cows with higher BHBp (greater likelihood of having ketosis) in blood usually have shorter production life (-0.168 ± 0.019). Cows with higher fertility and postpartum recovery, such as younger age at first calving (0.157 ± 0.019) and shorter interval from calving to first insemination in heifer (0.111 ± 0.006), usually have lower BHB concentration in the blood. Furthermore, the direct genetic correlations change across parity and lactation stage. In general, our results suggest that selection for lower predicted BHB in early lactation could be an efficient strategy for reducing the incidence of ketosis as well as indirectly improving reproductive and longevity performance in Holstein cattle.
Asunto(s)
Palabras clave

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Leche / Longevidad Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Animals / Pregnancy Idioma: En Revista: J Dairy Sci Año: 2022 Tipo del documento: Article País de afiliación: China

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Leche / Longevidad Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Animals / Pregnancy Idioma: En Revista: J Dairy Sci Año: 2022 Tipo del documento: Article País de afiliación: China
...