Your browser doesn't support javascript.
loading
TransformerGO: predicting protein-protein interactions by modelling the attention between sets of gene ontology terms.
Ieremie, Ioan; Ewing, Rob M; Niranjan, Mahesan.
Afiliación
  • Ieremie I; Vision, Learning & Control Group, University of Southampton, Southampton SO17 1BJ, UK.
  • Ewing RM; Biological Sciences, University of Southampton, Southampton SO17 1BJ, UK.
  • Niranjan M; Vision, Learning & Control Group, University of Southampton, Southampton SO17 1BJ, UK.
Bioinformatics ; 38(8): 2269-2277, 2022 04 12.
Article en En | MEDLINE | ID: mdl-35176146
MOTIVATION: Protein-protein interactions (PPIs) play a key role in diverse biological processes but only a small subset of the interactions has been experimentally identified. Additionally, high-throughput experimental techniques that detect PPIs are known to suffer various limitations, such as exaggerated false positives and negatives rates. The semantic similarity derived from the Gene Ontology (GO) annotation is regarded as one of the most powerful indicators for protein interactions. However, while computational approaches for prediction of PPIs have gained popularity in recent years, most methods fail to capture the specificity of GO terms. RESULTS: We propose TransformerGO, a model that is capable of capturing the semantic similarity between GO sets dynamically using an attention mechanism. We generate dense graph embeddings for GO terms using an algorithmic framework for learning continuous representations of nodes in networks called node2vec. TransformerGO learns deep semantic relations between annotated terms and can distinguish between negative and positive interactions with high accuracy. TransformerGO outperforms classic semantic similarity measures on gold standard PPI datasets and state-of-the-art machine-learning-based approaches on large datasets from Saccharomyces cerevisiae and Homo sapiens. We show how the neural attention mechanism embedded in the transformer architecture detects relevant functional terms when predicting interactions. AVAILABILITY AND IMPLEMENTATION: https://github.com/Ieremie/TransformerGO. SUPPLEMENTARY INFORMATION: Supplementary data are available at Bioinformatics online.
Asunto(s)

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Aprendizaje Automático Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2022 Tipo del documento: Article

Texto completo: 1 Colección: 01-internacional Base de datos: MEDLINE Asunto principal: Algoritmos / Aprendizaje Automático Tipo de estudio: Prognostic_studies / Risk_factors_studies Límite: Humans Idioma: En Revista: Bioinformatics Asunto de la revista: INFORMATICA MEDICA Año: 2022 Tipo del documento: Article
...